Expectation Invariants for Probabilistic Program Loops as Fixed Points

Aleksandar Chakarov*! and Sriram Sankaranarayanan !

YUniversity of Colorado, Boulder, CO

October 9, 2014

Abstract

We present static analyses for probabilistic loops using expectation invariants. Probabilistic loops
are imperative while-loops augmented with calls to random value generators. Whereas, traditional
program analysis uses Floyd-Hoare style invariants to over-approximate the set of reachable states, our
approach synthesizes invariant inequalities involving the expected values of program expressions at the
loop head. We first define the notion of expectation invariants, and demonstrate their usefulness in
analyzing probabilistic program loops. Next, we present the set of expectation invariants for a loop
as a fixed point of the pre-expectation operator over sets of program expressions. Finally, we use
existing concepts from abstract interpretation theory to present an iterative analysis that synthesizes
expectation invariants for probabilistic program loops. We show how the standard polyhedral abstract
domain can be used to synthesize expectation invariants for probabilistic programs, and demonstrate
the usefulness of our approach on some examples of probabilistic program loops.

1 Introduction

Inductive loop invariants are commonly used in program verification to prove properties of loops in (non-
deterministic) programs. Abstract interpretation provides a powerful framework to synthesize inductive
invariants automatically from the given program text [7]. In this paper, we provide a static analysis
framework for probabilistic loops that can call random number generators to sample from pre-specified
distributions such as Bernoulli, Uniform Random and Normal (Gaussian). Probabilistic programs arise
in a variety of domains ranging from biological systems [I1§] to randomized algorithms [23]. In this paper,
we present an abstract interpretation framework for deriving expectation invariants of probabilistic loops.
Expectation invariants are expressions whose expectations at any given iteration of the loop exist, and
are always non-negative.

Proving expectation invariants often requires approximating the distribution of states after n steps of
loop execution (see [2} 20} 22] O, [17] for techniques that approximate distributions in a sound manner).
However, even simple programs, such as the program shown in Figure|l} can exhibit complex distributions
of reachable states after just a few steps of loop execution (see Figure . Extrapolating from a few to
arbitrarily many loop iterations requires the notion of “inductive invariants” for probabilistic programs.
In this paper, we build upon the standard notion of quantitative invariants originally considered by Mclver
and Morgan [19]. First we extend quantitative invariants from single expressions to a set of expressions
that are mutually invariant: multiple expressions whose expectations are nonnegative simultaneously.
Next, we characterize invariants as a fixed point, making them amenable to automatic approximation
using abstract interpretation. We demonstrate polyhedral analysis over numerical probabilistic programs
that manipulate real- and integer-valued state variables.

*first.lastname@colorado.edu
ffirst.lastname@colorado.edu



Our approach first defines the notion of inductive invariants using the pre-expectation operator, along
the lines of Mclver and Morgan [19]. We lift the pre-expectation operator to a cone of expressions,
and subsequently construct a monotone operator over finitely generated cones. Any pre-fixed point of
this monotone operator is shown to correspond to expectation invariants. We then use the descending
abstract Kleene iteration starting from the cone T of all affine (or fixed degree polynomial expressions)
to iteratively apply the monotone operator to this cone and obtain a pre-fixed point. A (dual) widening
operator is used to accelerate this process.

We apply our technique to some small but complex examples of probabilistic programs and demon-
strate the power of our approach to synthesize expectation invariants that are otherwise hard to realize
manually. We also compare our approach with the tool PRINSYS that synthesizes quantitative invari-
ants using a constraint-based approach by solving constraints on the unknown coefficients of a template
invariant form [13] [11].

Related Work. The broader area of probabilistic program analysis has seen much progress over the
recent past. Our previous work combining symbolic execution of probabilistic programs with volume
computation, provides an extensive review of approaches in this area [24]. Therefore, we restrict ourselves
to very closely related works.

Mclver and Morgan were among the first to consider deductive approaches for probabilistic programs
using the concept of quantitative invariants [19]. Their work focuses on programs where the stochastic
inputs are restricted to discrete distributions over a finite set of support. We naturally lift this restriction
to consider a richer class of distributions in this paper including Gaussian, Poisson, Uniform or Expo-
nential random variables. Our setup can use any distributions whose expectations (and some higher
moments) exist, and are available. Furthermore, our technique synthesizes invariants that are polynomial
expressions involving the program variables. In particular, indicator functions over program assertions
are not considered in this paper [I3| 19]. Indicator functions complicate the computation of the pre-
expectation when a richer class of distributions are allowed. Finally, Mclver & Morgan treat demonic
non-deterministic as well as stochastic inputs. Our approach, currently, does not support (demonic)
non-determinism; but is potentially extensible when demonic non-determinism is present. Our previous
work [3] first considered the relationship between quantitative invariants and the well-known concept of
martingales and super-martingales from probability theory [26]. In particular, it demonstrates the use of
concentration of measure inequalities to prove probability bounds on assertions at various points in the
program [10]. The notion of inductive expectation invariants is a strict generalization of that considered
in our previous work. While martingales and super-martingales are analogous to a single inductive linear
inequality, we consider the analog of multiple mutually inductive linear invariants. The use of abstract
interpretation framework is an additional contribution. The generation of quantitative invariants was
first studied by Katoen et al. [I3], using a constraint-based approach [6], 25], implemented in the tool
PRINSYS [II]. An experimental comparison is provided in Section

Abstract domains for probabilistic programs were first considered by Monniaux [20], by enriching
standard abstract domains with bounds on the measure. Refinements of this idea appear in the work of
Mardziel et al [I7] and Bouissou et al. [2]. Instead of the explicit representations of distributions found
in these works, we characterize sets of distributions by means of bounds on moments of expressions.
Alternatively, Monniaux presents a backward abstract interpretation scheme to compute the probability
of an observable assertion at the program output, and characterize the output distribution [2I]. The
backwards approach treats the program as a measurable function, and the backward abstract interpreta-
tion follows the natural definition of the output distribution through the inverse mapping [5]. However,
the approach seemingly requires a user generated query or a systematic gridding of the output states to
define the distribution. Cousot and Monerau [9] present a systematic and general abstract semantics for
probabilistic programs that views the abstract probabilistic semantics obtained by separately considering
abstractions of the program semantics, the probability (event) space, and a “law abstraction” that is a
function mapping abstract states to the distribution over the set of possible abstract next states obtained
from a single step of program execution. Their approach conveniently captures existing techniques as



real x := rand(-5,3) 2x104 Histogram of count for 100,000 runs

real y := rand(-3,5) [ IMean! 5.3894
int count := 0 18 ; :
while (x+y <= 10) € |
if £1ip(3/4) 216 . 1
x := x + rand(0,2) g |
y =y + 2 g 14 ’ l|.
count ++ Q4o i 1IN
o |
real x := rand(-5,3) E 1 : L
real y := rand(-3,5) 8 I
int count := 0 kS 08 ’ r
while (forever) 6‘06 L.
if (x + y <= 10) s |
if £1ip(3/4) T 04 -
x := x + rand(0,2) E |
y =y + 2 02 -t
count++ I -
else 00 2 4 6 8 10 12 14 16 18 20

// Preserve x,y,count

Value of count

Figure 1: (Left, Top) Simple example of a probabilistic program loop; (Left, Bottom) Modified loop
with stuttering semantics, and (Right) histogram of the value of count after executing the stuttering loop
for at most 25 steps.

instances of their framework, while providing new ways of abstracting probabilistic program semantics.
Based on our current understanding, the approach in this paper fits into their framework by viewing
expectation invariants as representing sets of distributions, and the proposed transfer functions as law
abstractions that characterize next state distributions.

Example 1.1. Figure [l shows a simple probabilistic program written in an imperative language. Each
execution of the loop updates variables x,y with probability % or chooses to leave them unchanged with
probability i. The variable count acts as a loop counter. Our approach first rewrites the program to yield
a stuttering loop (see Fig. [I(Left, Bottom)). Analyzing the stuttering loop yields expectation invariants
such as
(Vn € N) E(count | n) < %

Here, n refers to the number of iterations of the stuttered loop and E(count | n) is the expected value of
count over the distribution of reachable states after n € N iterations.

We ask a natural followup question: what is the expected number of steps the program takes to
complete execution, i.e. what is the value E(count) upon termination of the original program? A simple
dynamic approach is to simulate (execute) the program a large number of times and obtain an empir-
ical estimate for E(count). Figure [[(Right) presents the simulation results in the form of a frequency
histogram that estimate the expected value of the loop counter.

In this paper we propose a static analysis approach, instead, whose goal is to establish facts about the
behavior of the program. For one, we can conclude that the original program terminates almost surely
since the E(count | n) is shown to be finite for all n. Knowing that count is always nonnegative, we can
now apply Markov’s concentration of measure inequality [5], [10] to conclude bounds on the probabilities
of the value of count at any program step: P(count > 25 | n) < %@t‘") < 5—765 ~ 0.32. Often, we
can use much stronger inequalities, should the necessary conditions for these be met. In addition, our
analysis yields many other interesting results, for instance:

VneN, E(3count —2y +2 | n) =0 and E(4x + 4y — 9count | n) = 0.

Outline. The remainder of this paper is organized as follows: Section [2| introduces the preliminaries of
probabilistic programs before we extend the discussion to expectation invariants and cones in Section



Section {] presents an abstract interpretation based iterative approach to compute fixed points under the
pre-expectation operator. Section [5]is a summary of the experiments we conducted using our prototype
version of the tool and a comparison with the PRINSYS tool.

2 Preliminaries

2.1 Probabilistic Loops

Let P be a probabilistic program in an imperative language with random number generators including
unifInt(1b, ub), unifReal(lb, ub), and gaussian(mean, var). These constructs draw values from
standard distributions with well-defined, finite expected values. Let X = {z1,...,zy} be a set of real-
valued program variables and R = {ry,...,r} be a set of real-valued random wvariables. Vectors x
and r denote valuations of all program, respectively random, variables. The random variables have a
joint distribution Dg. Formally, the distribution is defined over an underlying o-algebra (2, F) with an
appropriate measure .

A linear inequality over X is an expression of the form a” x < b for a vector a € R™,b € R. A linear
assertion ¢[X] involving X is a conjunction of linear inequalities ¢ : A, alx < b; and can be succinctly
expressed in matrix notation as ¢ : Ax < b.

Definition 2.1 (Probabilistic Loops). A probabilistic loop is a tuple (T, Dy, n), wherein T : {71,..., 7%}
is a set of probabilistic transitions (from the loop head to itself), Dy is the initial probability distribution
and n is a formal loop counter variable.

Each probabilistic transition 7; : (g;, F;) consists of (a) guard assertion g;[X] over X; and (b) update
function F;(x,r) that yields the next state x’ = F;(x,r).

In this paper, we restrict ourselves to piecewise linear (PWL) probabilistic programs, wherein each
transition 7; has linear assertion guards and piecewise linear updates. Further, we also restrict ourselves to
studying expectation invariants over simple loops. An extension of these ideas to programs with arbitrary
control flow structure including nested loops we reserve as future work.

Definition 2.2 (PWL Transitions). A piecewise linear transition 7 : (g, F(x,r)) has the following special
structure:

e g is a linear guard assertion over X

e F(x,r) is a (continuous) piecewise linear update function for X, where, for ease of presentation, r
is decomposed into a vector of continuous (random) choices r. and a vector of discrete Bernoulli
choices (coin flips) rp. As a result, the update function may be written as

f1: Aix+ Bir.+dy, with probability pq,
F(X’ I') =
f : Apx + Bpr. + di, with probability pg,

Options fy,...,fx, abstract the effect of the Bernoulli choices in rp, and are called forks, while
p1,---,pk are fork probabilities satisfying 0 < p; < 1, and Zle p; = 1; with Aq,..., A € R™™
Bi,...,B, e R™ and dy,...,d, € R.

No Nondeterminism. For a probabilistic loop (7, Dy, n), we preclude demonic nondeterminism using
two restrictions:

Mutual Exclusion: For all pairs of transitions 7 : (g1, F1) and 75 : (g2, F2) in T, g1 A g2 = false.

Exhaustiveness: For all transitions 7;, we require that Vn o1 i = true.

4



Mutual exclusion and mutual exhaustiveness together guarantee that precisely one transition can be taken
at a time step n and the choice is a function of the state x.

Execution Model. A state of the probabilistic loop is a tuple (x,n) that provides values for the program
variables X and the loop counter n. The state (x¢,0) is called an initial state if x¢ is a sample drawn
from the initial distribution Dy and n = 0.

Definition 2.3 (Sample Path). A sample path (or an execution) of the loop is an infinite sequence

7 rg W rq ™y,

(%0,0) —=% (x1,1) —5 (x9,2) — -+ — (Xpy1,m + 1) — --- , wherein, (a) (x¢,0) is a sample
from Dy and (b) for each i > 0, (x;41,7 + 1) is obtained by executing the unique transition 7 : (g;, F;)
that is enabled on the state (x;,4). This execution involves a sample from the Bernoulli (discrete) random
variables to choose a fork of the transition 7 and a choice of the continuous random variables r. to
obtain Xi4+1 = .FZ'(XZ‘, I‘Z‘).

We demonstrate the definitions above on a simple example.

Example 2.1. In Figure [1| (Left, Bottom) we present the stuttering version of a simple probabilistic
program with a loop, where the initial values of the program variables reaching the loop head come from
the joint distribution Dy : (x,y,count) ~ U[—5,3] x U[—3,5] x {0}. This stuttering modification adds
a new program path that preserves the values of program variables once the loop guard x +y < 10 is
violated. The program has two transitions 7 : {71, 72}, where 7 represents the loop body:

71 (loop body) 7o (stuttering)
g1 : (zv+y<10)
r B —
x’ X+,
fio |y =y 42, w.p. 3 g2 ¢ (z+y>10)
9
count’ +— count + 1, X = X
Fm i Fry y =y
X7 — X }
f 7 1 count’ +— count,
20 [ Y =y, w.p. 1
\ | count’ ~ count +1, |

Here r; represents the uniform random variable over [0,2]. Transition 7o represents the stuttering after
x4y > 10. It is added to satisfy the mutual exclusiveness and exhaustiveness requirements. It has a single
fork that preserves the values of x,y,count. Figure [2| depicts 200 sample paths obtained by simulating
the program (for 25 steps) and distributions D,, for n = 0 and n = 25 obtained by running the program
106 times.

2.2 Operator Semantics

Probabilistic program semantics can be thought of as continuous linear operators over the state distribu-
tions, starting from the initial distribution Dy:

P, [Pl [P [PL

Dy Dy Dy,

Here, [P] models the effect of a single loop iteration and D, is the distribution of the states after n
iterations of the loop. This matches the standard probabilistic program semantics [15], 21].
We now describe the construction of the distribution D,, ;1 for the (n + 1) loop iteration, given the
distribution D,, at the n'" step. The details of this section may be skipped upon a first reading.
Formally, D,, consists of a probability space (€, F, tin) over a sample set (2, with events in F,, and a
probability measure pu,, as well as a Borel measurable function D,, : €, — R mapping samples w € €,



sample path for x « 10° Histogram for x e 10* Histogram for x
T T

. alin

-4 -2 0 2 4 -5 0 5 10

X X
mean: mean:
-0.99896 2.8522
,x 104 Histogram for y e 104 Histogram for y
i i
1 |
1 : 2 - 1
% - 6 % 5 10 15 20
Y Y
mean: mean:
1.0016 8.7044
0% 10° Histogram for count ,x 10° Histogram for count
15
5 1
N Y
. ‘ ‘ ‘ ‘ . Ly ‘
5 -60 —40 -20 0 20 40 60 0 10 20 25
count count
9% : 75 75 75 s mean: mean:
0 5.1345

Figure 2: (Left) Some sample paths for the program in Figure |1l (Right) Frequency histograms for the
distributions D,, for n = 0, 25.

to values of the state variable x. Likewise, the distribution of random r is given by Dpg, defined as the
probability space (2, F,, 1) and a measurable function D, : Q, — R* mapping samples w, € €, to
random variables r.

The standard product measure D, g : D, ® Dr has sample set 2,1 : €, x€),. and events F, g
generated by sets of the form A x B where A € F,, and B € F, with a measurable function D,,, :
Qn X Q. — R™ x R¥, mapping events (w,,w,) to corresponding values of state and random variables
(x: Dp(wy), r: Dp(wy)).

The distribution D,, 41 is defined naturally by the product probability space D,, r with a measurable
function Dy, 11 : Q,%XQ, — R™ maps a sample (wy,,w,) from the sample space €2, X, to the state x’ that
results from the execution of the probabilistic loop for a single step starting from the state x : Dy, (wy,)
and random values r : D, (w;).

Dpi1(wn,wy) : {x' | x = Dp(wy), r = Dy(w,), x — x'}.

The absence of nondeterminism in our setup ensures that x’ is uniquely defined given samples wy,, and w;..
To summarize, the next state distribution D, has a probability space defined as the product probability
space of D, ® D, with a measurable function D,,4+1 that maps samples from D,, and D, to the resulting
states obtained by a single step execution of the loop.

Sample Path Semantics: Equivalently, a direct characterization of the distribution D,, is given as the
product of the probability spaces
Dy®@Dr®---®Dg,
—_—

n times
equipped with a measurable function F), : Qg x Q' — R™ that maps each sample @ : (wg,wy1, ..., wWrn) tO
the unique resulting state x,, obtained by starting from initial state x¢ : Dp(wo) and executing the loop
n times with a series of random values ry : D, (wy1), ... @ Dy(wp), at each iteration to yield a sample
path:

. ri: Dr(wr1) ro: Dy (wr2) rn: Dr(wrn)
x0 : Do(wp) X1 _ Xn




The absence of nondeterminism ensures that the sample path is unique once xg,r1,...,r, are known.

Existence of Moments We assume that the distributions Dy and Dy are independent, and all moments
exist (and are finite). Therefore, for any polynomial p(xg,r1,...,r,) wherein xg ~ Dy and r; ~ Dg, with
variables r;, r; pairwise independent for i # j, Ep,opp-.epy (P) exists (and is finite).

Let P be a piecewise linear probabilistic program and e(x,) be a polynomial expression over the
variables x,, obtained after n steps of loop execution. Under the assumptions above on only Dy and D,.,
we conclude the following key result:

Lemma 2.1. For any polynomial expression e(x) over the program variables, and any n € N, Ep, (e)
exists (and is finite).

2.3 Pre-Expectations

We now define the useful concept of pre-expectation of an expression e over the program variables across
a transition 7 following earlier work by Mclver and Morgan [19]. Let 7 : (g, F) be a transition and e[x]
be an expression involving the state variables x of the program.

Given any state x of the loop and an expression e involving the state variables, we seek to know the
expected value of the expression e(x’) evaluated over all possible next states x’ that can be reached in
one loop iteration starting from x. The resulting function that maps x to the expectation of the e in the
next step is called the pre-expectation of e, following the terminology established earlier by Mclver and
Morgan [19]. We first defined the pre-expectation w.r.t a given transition 7 and then use this to define
the pre-expectation w.r.t to all transitions in the loop.

The pre-expectation operator prelE, of an expression e involving the next-state program variables X',
w.r.t to a transition 7 is an expression transformer that computes the expectation of the expression e(x’)
in the next step in terms of current state variables of the program x. Formally,

preE. (e[x]) : Eg(e[x’ — F(x,1)] | x)

The expectation Ep is taken over the distribution of r along transition 7.

Notation: We define the pre-expectation as a map that transforms expressions over the next-state
variables X' into current state variable expression X . Therefore, wherever applicable, preE(e(x’)) results
in an expression over the original state variables x. For convenience, let €’ denote the expression e[x — x/]
with each current state variable xz; substituted by its next-state variable a:;

Consider a PWL transition 7 with k& > 0 forks, fi,...,fy, each of the form f; : A;x + Bjr + d; with
fork probability p;. The pre-expectation operator is defined as

k

preE.(¢) = Y p;Er(PRE(€, f;) | x)
j=1

where PRE(€/, f;) is the substitution of post variables x" for their update values f;(x,r) in expression e.
The expectation Er(g) denotes the expectation of g over the joint distribution R of the random variables.

Example 2.2. We illustrate the notion of a pre-expectation of a program expression by considering the
expression 3 + 2x — y across transition 71 in the Figure

N 334 2E,,(z+7m)— (y+2)]+ // from fork f; )
prefr (3 +2x —y'): ( %[34-237—9] // from fork fo )~

Simplifying, we obtain preE, (3 + 2x' —y') = 3+ 2z — y + 3E,, (r1) — 3. Noting that E,, (r1) = 1, we
obtain preE, (3 +2x' —y') =3+ 2x —y.



Likewise, we define preE(e’) (without a transition as a subscript) as

L., xprer, () + - + 1, xpreEy, (),

gry,
wherein 14(x) is the indicator function:

1, (x) :{ 1 if x |= g(x),

0 otherwise

We now state a key result involving pre-expectations. Consider a prefix o of a sample execution
(x0,0) = (x1,1) = -+ = (Xn,n). Given that the current state is (xp,n), we wish to find out the
expectation of an expression e over the distribution of all possible next states (x,41,n + 1). Let é :
preE(e).

Lemma 2.2. The expected value of e over the post-state distribution starting from state (X,,n) is the
value of the pre-expectation € evaluated over the current state X,:

E(e(xnt1)[xn, n) = &(xn) = Z 1y, (%) xprek.,(¢) .
€T

Proof. This follows directly from the definition of the pre-expectation operator. O

Finally, we extend Lemma to the full distribution D,, from which x,, is drawn.

Lemma 2.3. Let e be an affine program expression. Then

EDn+1 (e) = EDn (preE(e/)) = EDn Z ]]'gTi X preETi (e/)
ET

3 Expectation Invariants

Expectation invariants are invariant inequalities on the expected value of program expressions. Therefore,
one could view the set of possible state distributions D; at step ¢ as the concrete domain over which
our analysis operates to produce the abstract facts in the form of expectation invariants over these
distributions. We formalize the notion of expectation invariants and derive a fixed point characterization
of expectation invariants in the next section.

3.1 Definitions and Examples

Let P : (T, Dy, n) be a probabilistic loop and let (x,0) be the initial state of the system. From Section
we know that xg is drawn from an initial distribution Dy and that any n-step sample execution of P
defines a sample trajectory through the distributions of reachable states Dy,..., D, at step i for any
0 < i < n. We then define the ezpectation of a program expression e at time step n as E(e | n) = Ep, (e).
Notation: We denote the expectation of an expression e over the program variables at the j** step
as E(e | n = j) or equivalently Ep,(e). Unless otherwise mentioned, e will denote an affine (or linear)
expression over the program variables.

Definition 3.1 (Expectation Invariants). An e over the program variables X is called an ezpectation
invariant (EI) iff for all n > 0, E(e | n) > 0.

Thus, expectation invariants are program expressions whose expectations over the initial distribution
are non-negative, and under any number n > 0 of iterations of the probabilistic loop remain non-negative.

Example 3.1. Consider the program from Example [l} and the expression y — x. Initially, E(y —x | 0) =
Ep,(y —x) =1—(—=1) =2 > 0. We can show that E(y —x | i) = E(y | i) — E(x | ) > 0 at any step .
Therefore, y — x is an expectation invariant.



3.2 Martingales and Expectation Invariants

Expectation invariants as given by Definition are closely related to the concept of (super-, sub-)
martingales, studied in our earlier work [3].

Definition 3.2 (Martingales). Let s: (x,,n) be the state of a probabilistic loop P. Let e be a program
expression over the program variables X. Expression e is called:

e a supermartingale if ¥V n,x, preE(e’) <e,

e a submartingale if V n,x, preE(e’) > e,

e a martingale if e is both a supermartingale and a submartingale.
In fact, martingales naturally yield expectation invariants.

Lemma 3.1. For every supermartingale expression e the expression eg — e s an expectation invariant,
wherein eg = E(e | n =0).

Proof. First, we observe that V x, preE(e’) < e. Therefore, assuming that the expectations on both
sides exist, we have for all n > 0, Ep, (preE(e’)) < Ep, (e).

We now prove that E(eg —e | n) > 0 for all n € N by induction. Clearly, for n = 0, the statement
holds. Furthermore, assume that E(eg — e | n = j) holds, we obtain

E(eg—e|n=j+1)=E(e — preE(e)) | n = j)
— ¢ — E(preE(e) | n = j)
>ep—E(e|n=7j)>0.

O

However, expectation invariants can arise without martingales, as shown by the following simple
example that repeatedly swaps two variables x,y:

real x := rand(0, 5), y := rand(4, 7)
while (true)
(x, y) := (y + unifRand(-1,1), x+unifRand(-2,2))

Notice that expressions x and y are expectation invariant. However, they are not martingales. In fact, to
prove that E(x) > 0, at any step, we require that E(y) > 0 at the previous step.

Therefore, the notion of expectation invariants subsumes that of martingales as defined here. Drawing
analogies to the familiar case of Floyd-Hoare invariants, martingales correspond to assertions which are
invariant by themselves, whereas expectation invariants are analogous to the general case of mutually
inductive invariants [16].

3.2.1 Proving Expectation Invariance

We now focus on the question of proving that a given expression e over the program variables is an
expectation invariant. This requires constructing (approximations) to the distribution D,, for each n, or
alternatively, an argument based on mathematical induction. We first observe an important property of
each D,,.

Definition 3.3 (Admissible Distribution). We say that a distribution D over the state-space X" is admis-
sible if all moments existH In other words, for any polynomial p(x) over the program variables, Ep(p(x))
exists, and is finite.

"While the existence of only the first moment suffices, our experiments demonstrate that our current synthesis approach
can be extended to polynomial expectation invariants.



Let us assume that any program P which we attempt to analyze is such that
1. Dy, the initial state distribution, is admissible;
2. For each transition 7, the distribution of the random variables Dg is admissible.

Under these assumptions, we invoke Lemma to conclude that D,, is admissible for each n > 0.
However, rather than construct D,, explicitly for each n (which can be impractical), we formulate the
principle of inductive expectation invariants. Consider expressions F = {ej, ..., e, } wherein each e; is a
linear (or polynomial) expression involving the program variables.

Definition 3.4 (Inductive Expectation Invariants). The set E of expressions forms an inductive expec-
tation invariant of the program P iff for each e;, j € [1,m],

1. Ep,(e;j) > 0, i.e., the expectation at the initial step is non-negative.

2. For every admissible distribution D over the state-space X,

(Ep(e1) >0 A --- A Ep(em) >0) = Ep(preE(e})) > 0. (1)

The inductive expectation invariant principle stated above follows the standard Floyd-Hoare approach
of “abstracting away” the distribution at the n'® step by the inductive invariant itself, and using these
to show that the invariant continues to hold for one more step. Furthermore, it abstracts away from a
specific D,, to any admissible distribution D.

Theorem 3.1. Let E : {e1,...,en} be inductive expectation invariants (Definition , it follows that
each e; € E is an expectation invariant of the program:

VneN, E(gn) >0

Proof. The proof uses the important fact that each distribution D,, is admissible. We prove by simulta-
neous induction that

/\ E(ejln) > 0.
Jj=1

Base-Case: The base case for n = 0 follows from item [I of Definition [3.41
Induction Step: Let us assume that the required statement holds for n and attempt to show for n + 1.
Using Eq. , and the admissibility of D,,, we note that for each j € [1,m],

(Ep, (1) >0 A -+ A Ep, (ey) >0) Epn(preE(eg)) >0

Therefore, we conclude that Ep, (preE(e})) > 0. Since, Ep, ., (ej) = Ep, (preE(e})), we have Ep, ,, (e;) =
Ep, (preE(e})) > 0 for each j. Thus, the induction step is proven. O

However, Definition [3.4] is quite unwieldy, in practice, since the quantification over all possible ad-
missible distributions D over the state space X is a higher order quantifier (over probability spaces and
measurable functions). Rather than reason with this quantifier, we will use the following facts about
expectations to formulate a new principle:

Theorem 3.2 (Facts About Expectations over Admissible Distributions). The following hold over all
possible admissible distributions D over a o-algebra X, linear assertion v, and linear (or polynomial
expressions) e, ey, ..., eg:

1. Linearity of expectation: Ep(Ae1 + ...+ Ager) = MEp(er) + -+ + McEp(ex), for A\; € R.

2. If o =e>0 then Ep(1l, xe) >0, provided [¢] is measurable. Specifically, Ep(le>oXxe) > 0.

10



3. Ep(lye + 1-,e) = Ep(e), provided [¢] is measurable.

Using these facts as “axioms”, we attempt to reformulate the key step [2] of Definition [3.4] as a simple
quantified statement in (first-order) linear arithmetic. Consider, once again, the key statement of the
principle . The central idea of our approach is to express the pre-expectation prelE(e;) for each e; € E
as

prelE(e] Z Ajigi + Z 1L, X gp) (2)

wherein \;j; > 0 and p;, > 0 are real-valued multlphers, gp are linear expressions over the program
variables and ¢, are assertions such that ¢, |= g, > 0. The origin of the expressions g, and assertions ¢,
will be made clear, shortly. Let us fix a finite set of expressions E = {e1,...,en}.

Lemma 3.2. Suppose for all e; € E, the principle holds:

preE Z)\ Zez—i—z,u,”) o X 9p) s

for some \j; > 0,1, >0 and ¢, = g, > 0, then E satisfies the original induction principle (|1)):

For all admissible D, (Ep(e1) >0 A --- A Ep(en) >0) = Ep(preE(e))) > 0.

Proof. Let E be such that for each e; € E, we satisfy as below:

preIE Z Ajiei + Z tip(Ly, X gp),

for some Aj; >0, 5, > 0 and ¢, = g, > 0.
m
Let D be any admissible distribution such that A Ep(e;) > 0. Using, linearity of expectation, we

j=1
note that
ED )\ﬂ-ei = A i Ep(ei) > 0. (3)
(S ) - 2o g

>0

Similarly, applying Theorem we note that Ep(1,, X gp) > 0.

E» (z ip (1, Xgp>) =S s (15, x9p) 20 2
—_——————
p p >0

Combining, and , we note that

Ep(preE(e})) = Ep (221 Aji€i D, ip (L, X g,,)) From Stmt. of Thm.
= Ep (3L Ajie) + Ep (Zp tip (Lg, Xgp))
> 0 Applying and

11



3.3 Conic Inductive Expectation Invariants

We now formalize this intuitive notion of inductive invariants using the concept of conic inductive expec-
tation invariants. Let P be a program with transitions 7. Let g; be a linear assertion representing the
guard of the transition 7;. We express g; as /\;‘;1 gi; > 0, wherein g; ; are affine program expressions.

Let g; : (gi1 --- gin;)T be a vector representing g;. Likewise, let E = {e1,...,en} be a finite set of
expressions, we denote the vector of expressions as e : (e1,...,en)7.

Definition 3.5 (Conic Inductive Expectation Invariants). The finite set E is a conic inductive invariant
of the program P iff for each e; € F,

1. Initial Condition: Ep,(ej) > 0 over the initial distribution Dp;

2. Induction Step: There exists a vector of multipliers A; > 0, such that for each transition 7 : (g, F7),
preE, (e;) can be expressed as a conic combination of expressions in £ and the expressions in g;:

Foreache;j (3X;>0) (V7 €T) (3 >0) preE; (e;) = )\? e+ulg. (5)

In particular, we note that the order of quantification in Equation is quite important. We note
for a given expression e; the multipliers \; must stay the same across all the transitions 7; € 7. This will
ensure the applicability of the linearity of expectation.

Example 3.2. Theset E ={e;: y—2x, ea: 2x —y+3, eg: 4x —3count +4, eg: —2x+y —3, e5:
—4x + 3count — 4} is a conic inductive invariant for the program in Example Consider e; : y — 2x.
We have

3 1
preE, (e1) : E,, (4(y +2—2x—2r;) + Z(y — 2x)) =y —2x.

Likewise, preE,,(e1) : e1, since 73 is a stuttering transition.
Therefore, setting A : (1 0 00 0)7, we obtain preE(e;) : ATe 4+ 0x 1,4y<10-

Changing the order of quantification in Equation [5| makes the rule unsound. In particular, we will
address the need to maintain the multipliers A\; the same across all transitions. Consider a variant of the
Equation , as below:

For each ej (Y 7 € T) (3 Aj > 0) (3 i > 0) preE, () = )\]T e+ ulg. (6)
Such a rule seems like a natural encoding of the implication:
m q
/\ e; >0 A /\ ar>0 = pre]ETl(e;) >0.
j=1 k=1
The following example demonstrates the unsoundness of the rule (@

Example 3.3. Consider the program below:

X {x}
real x := unifRand(-1,1) T {r1, 72}
while (true) ’
if ( x <= 0) - { g1: x‘<0
X 1= 2 % x; Fi(x): 2z
else o { g2: =0
x i= x / 2 Fy(x): 0.5x

Do : Uniform[—1, 1]

12



First, we observe that Ep,(x) = 0. This gives us two IEI candidates x and -x. Using the rule in
Equation [6] we obtain:

e For transition 71, we have

pref, (x') =2x(x), and preE, (-x')=2x(-x);

e For transition 7, we have

preE, (x') =05x(x), and preE, (-x')=0.5x%(-x).

This means that according to rule (), we can conclude that E(x | n) > 0 and E(-x | n) > 0, and so
E(x | n) = 0 for all n > 0. This is clearly false since any negative initial value of x only ever execute 7
and grows unbounded!

The correct version of the rule (j5)), is able to correctly prove the invariance of -x and disprove x.

Lemma 3.3. Let E : {e1,...,en} be a conic inductive invariant for a program P as given by Defini-
tion . It follows that each e; satisfies Equation :

n
preE(e}) = Y Njiej + > pip(ly, Xgp)
j=1 P

for Njis pip = 0 and op = gp 2 0.

Proof. We note that for each e;, the expression:

preE(e]) : Z 1, xpreE.(e]). (7)
TET

From , there exists A such that for each transition 7,
prel, () = e+ ulg, .
Here the guard assertion for 7 is given by g, > 0. Substituting this into Equation @ yields,

pref(e}) = ) 7 lg 20X (A;e +ulgr) .,
et Lerz0 X (Ae) 4 3 ey g 20 X (i &)
= MY erlgzoxe+ Y oy Lg>o0x (ur8r)-

In particular, we note that having a common set of multipliers A\ across transitions allows us to rewrite
the summation - 1g >0X% ()\Te) as AT > re7 Lg.>0xe. Next, since the transition guards are mutually
exclusive and exhaustive, it follows that ) .+ 1g >0 X e = e. Therefore, we write

pref(e}) = Ae + ) 1g,>0xpl g, .
TET

This concludes the proof.
O

Theorem 3.3. Let E be a conic inductive invariant for a program P as given by Definition[3.5 It follows
that each e; € E is an expectation invariant of the program.

Proof. Proof simply combines Lemma [3.3 with Lemma [3.2] O

13



3.4 Pre-Expectation Closed Cones

Thus far, we have presented inductive expectation invariants as a finite set of expressions £ = {e1,...,en},
satisfying the conditions in Definition [3.4] or We transfer our notion from a finite set of expressions to
a finitely generated cone of these in preparation for our fixed point characterization in the next section.

Definition 3.6 (Cones). Let E = {ej,...,ex} be a finite set of program expressions over the program
variables x. The set of conic combinations (the cone) of E is defined as

k
Cone(E) = {A0+2Aiei yogxi,ogigk}.

i=1
Expressions e; are called the generators of the cone.
Given a non-empty linear assertion assertion ¢ : /\f:1 e; > 0, it is well-known that ¢ | e > 0

iff e € Cone(ey,...,er). Likewise, let E be an inductive expectation invariant. It follows that any
e € Cone(F) is an expectation invariant of the program P.

Example 3.4. Revisiting Example we consider the conic combination:
4(—2x +y — 3) + 3(4x — 3count + 4) = 4x + 4y — 9count

As a result, we conclude that Ep, (4x + 4y — 9count) > 0 at each step n > 0.

Analyzing the program by replacing the probabilistic statements with non-deterministic choice, and
performing polyhedral abstract interpretation yields the invariant x+y < 14 [8]. This allows us to bound
the set of support for D,,, and also allows us to conclude that Ep, (14 — x —y) > 0. Combining these
facts, we obtain,

Ep, (56 — 9count) > 0, or equivalently, Ep, (count) < 59—6 .

Conic Representations: A finitely generated cone Cone(ey,...,e;) of affine expressions ey, ..., e is
represented using a polyhedral cone. Specifically, let e : ¢y + ¢/'x be any element of the cone. The
polyhedral cone representation uses variables (cg,c). Such a polyhedron can be represented using the

C:P<c>§0
co

or as a set of generators given by the coefficient vectors of the expressions eq,...,eg.

constraint representation as:

Example 3.5. Consider the cone generated by expressions
e1: —2x+y—3, e: dx—32+4.
Any element of the cone can be written as ¢y + ¢1x + c2y + c3z wherein the constraints:

co= =3\ +4X A 1 = -2\

>
(3 AL Az 2 0> o =M A c3= -3\

Alternatively, we may express the cone with a vertex (co, c1,c2,c3) @ (0,0,0,0) and rays:

-3 4
-2 4
1 ’ 0
0 -3

14



4 Expectation Invariants as Fixed Points

In this section, we show that the notion of conic invariants as presented in Definition can be expressed
as a (pre-) fixed point of a monotone operator over finitely generated cones representing sets of expressions.
This naturally allows us to use abstract interpretation starting from the cone representing all expressions
(T) and performing a downward Kleene iteration until convergence. We use a (dualized) widening operator
to ensure fast convergence to fixed point in finitely many iterations.

Let P be a program over variables x with transitions 7 : {7,..., 7} and initial distribution Dy. For
simplicity, we describe our approach to generate affine expressions of the form ¢y +c’x for ¢y € R, c € R™.
Let A(x) represent the set of all affine expressions over x.

Polyhedral Cones of Expectation Invariant Candidates: Our approach uses finitely generated
cones [ : Cone(E) where F = {ej,...,e,} is a finite set of affine expressions over x. Each element e € I
represents a candidate expectation invariant. Once a (pre-) fixed point is found by our technique, we
obtain a cone I* : Cone(E*), wherein E* will be shown to be a conic inductive invariant according to
Definition [3.5

A finitely generated cone of affine expressions I : Cone(E) is represented by a polyhedral cone of
its coefficients C'(I) : {(co,c) | co + c'x € I}. The generators of C(I) are coefficient vectors (cg;, ;)
representing the expression e; : co; + ciTx.

Our analysis operates on the lattice of polyhedral cone representations, CONES, ordered by the set
theoretic inclusion operator C. This is, in fact, dual to the polyhedral domain, originally proposed by
Cousot & Halbwachs [§].

Initial Cone: For simplicity, we will assume that Dy is specified to us, and we are able to compute
Ep,(x) precisely for each program variable. The initial cone Iy is given by

Ip : Cone ({x1 — Ep,(z1),Ep,(z1) — 21, , Epy(xn) — T, xn — Ep, (z0)}) -

Such a cone represents the invariant candidates z; = Ep,(z;). The representation of the initial cone is
given by the set of 2n rays of the form [Ep,(z;) 0 --- 0 £10 --- 0].

Pre-Expectation Operators: We now describe the parts of the monotone operator over finitely
generated cones. Let E = {e1,...,e,} be a set of expressions. Let 7 : (g, F) be a transition, wherein
g: /\f:1 g1 > 0. We first present a pre-expectation operator over cones, lifting the notation prelE, from
expressions to cones of such:

Definition 4.1 (Pre-Expectation Operator). The pre-expectation of a cone I : Cone(E) w.r.t a transition
7 is defined as:

m p
pref (1) = {(e,\) € A(x)xR™ [ A >0 A T >0 (pref-() = Y Nej+ > pigi) }-
j=1 i=1

The refinement preE,(I) of a cone contains all affine program expressions whose pre-expectation
belongs to the conic hull of I and the cone generated by the guard assertion. For technical reasons, we
attach to each expression a certificate A that shows its membership back in the cone. This can be seen
as a way to ensure the proper order of quantification in Definition

Given a polyhedron C(I) representing I, we can show that C(preE,(I)) is a polyhedral cone over the
variables (¢, c) representing the expression coefficients and A for the multipliers.

Lemma 4.1. For a given cone C, the pre-expectation operator across a transition preE.(C) is also a
cone.

PreExpectation of Cones: First, we define the lifting of preE,(I) for a single cone of expressions I. Let

1
7 be given by the guard set A giTX—i— h; > 0, and update with forks fi,..., fx wherein f; : A;x+ B;r + a;
i=1

1=

15



is taken with probability p;. Consider a generic next state affine expression: e : o+ ¢/'x’. We write

preE. (/) : co+cl(p1Ar + -+ prAp)x + ¢ Ep, (p1Bir + -+ - + pp.Bir) + ¢’ (prag + - -+ + pray,) .

Simplifying, we write
preE. (/) : (co+a’lc) +c'Bx.

Let I be the cone generated by the expressions {ei,...,e,} wherein e; : dy; + d;-px. The generators of
the cone are given by the rays (do j,d;) for j = 1,..., k. We compute an augmented representation of the
cone I given by the constraints:

k I k I
Pr(do,d, A\, 1) : A>0 A >0 A dy :Z)\jdo,j“‘Z/«Lihi A dzz)\jdj+ZNigi-
= i—1 = i1

The polyhedron P; represents all combinations of expressions (dg + d’x) that are derived by a conic
combination of expressions eq,...,e; through multipliers Aq,..., A\x > 0 and guard inequality expressions
g1,...,8g through multipliers pi,...,u; > 0. The cone preE,(I) is given as

preE, (I): (3 p) Pr(co+a’lc,Ble,\ p).

Note that preE,(I) is a polyhedron over variables (cg, c) representing an expression e : cg + ¢/x and
multipliers A € R¥.
Next, we define a pre-expectation operator across all transitions:

k
preE(I) =f{e€ A(z) | (A >0) (e,A) € [ | preEy, (1)}
j=1

An expression e belongs to preE([) if for some A > 0, (e, A) € preE,, (/) for each transition 7; € T.
Given a cone C(I), we first compute the cones C(fl), .. ,C(fk) representing the pre-expectations

k R
across transitions 1,..., 7, respectively. Next, we compute C'(I") : (3 ) () C(I;), representing I’ :
j=1

preE(]), by intersecting the cones C (f ;) and projecting the dimensions corresponding to .
We define the operator G over cones as G(I) : Ip NpreE(]), where I is the initial cone.

Theorem 4.1. The operator G satisfies the following properties:
1. G is a monotone operator over the lattice CONES ordered by set-theoretic inclusion.

2. A finite set of affine expressions E is a conic inductive invariant (Deﬁmtion iff I : Cone(E) is
a pre-fized point of G, i.e, I C G(I).

4.1 Proof of Theorem [4.7]

The details of the proof are quite intricate, so we build the proof of Theorem [£.1]in a bottom up fashion.
Let P : (T,Do,n) be a probabilistic loop with 7 = {71,...,7n}, where each transition is of the form
7; : (g, Fi). We begin by showing that prelE, is a monotone operator.

Lemma 4.2. Let I = Cone(ey,...,ey) and Iy = Cone(hy, ..., hi) be two finitely generated cones such
that Iy C Is and let T; € T, then preE., (I1) C preE,, (I2).

16



Proof. Let (e, \) € preE,,(I;) for some e € A(z) and A > 0. By Definition {4} there exists p; > 0 such
that preE,,(e) = AT(ey---e;)T + ul'g;.

Since Iy C I then for every generator e; of Iy there exist non-negative coefficients Aji,..., \jx

such that e; = )\J-T(hl---hk). Therefore, we can define the change of basis transformation matrix
Air o Ak el hy

A= |: T such that | : =A|: . Notice that A is independent of 7;; more-
)\ml cee )\mk €m hk

over, A is a non-negative matrix.
This means that preE,,(e) = AT (e1 -+~ em)T + pul'gi = ATA(hy -+ - hy)T + ul'g;. Therefore, there exists
a non-negative X = AT A such that (e, ') belongs to I>. O

A consequence of Lemma [4.2| we see that for every (e, ) pair in I, there exists a unique (e, \') pair
in I regardless of the guard g; (and therefore, transition 7;). The following result follows immediately.

Lemma 4.3 (Monotonicity of preE). Let Iy = Cone(ey,...,en) and I = Cone(hq, ..., hy) such that
I) C I, then preE([;) C preE(1s).

Proof. If e € preE(I;) then there exists a signature A > 0 such that (e,\) € () oy preE;(I1). Define
N = ATA. Then (e, ) belongs to [, o7 preE-(I2). Therefore, e belongs to preE(l;). This completes the
proof of monotonicity. O

Lemma 4.4. Let E be a conic inductive invariant, then Cone(E) C Ij.

Proof. WLOG, let e; € E, then by construction, e; is a generator of Cone(FE). By Deﬁnition we know
that Ep,(e;) = k, for some k > 0. On the other hand, e; is a linear expression, so e; : ¢o + c¢'x for some
cp>0,c>0.

In = Cone({1,z1 — Ep,(z1),Ep,(z1) — x1, -+ , &, — Ep, (zn), Epy (2n) — 0 }).

For every j > 1, define (Ag;—1, A2j) = (¢;,0) if ¢; > 0 and (0, —c¢;) otherwise. Finally, define \g = k- ¢;.
It then follows that e; = Mg with A = (Ag, A, -+, Aan) > 0.
Therefore, e; € I. ]

Lemma 4.5. Let E be a conic inductive invariant and I = Cone(E), then I C preE(]).

Proof. Let e € I, then by Definition there exists a certificate A > 0 that satisfies the requirements of
Definition [, simultaneously, for every transition.
Therefore, e € preE(I). O

Theorem 4.2 (Theorem {4.1)). The operator G satisfies the following properties:
1. G is a monotone operator over the lattice CONES ordered by set-theoretic inclusion.

2. A finite set of affine expressions E is a conic inductive invariant (Def. if and only if I : Cone(E)
is a pre-fized point of G, i.e, I C G(I).

Proof. Part 1: Let I} = Cone(ey,...,en) and Iy = Cone(hy, ..., hy) such that I; C I,. Expanding the
definition of G and applying Lemma [4.3] G(I1) = Iy NpreE(I;) C Iy NpreE(l2) = G(I2). This completes
the proof that if I; C I5 then G(I1) C G(I2).
Part 2 (=): Let E be a conic inductive expectation invariant, then by Lemma I = Cone(E) is a
subset of Ip. By Lemma we know I C preE([). Therefore, by definition of G, I is a pre-fixed point
of G.

(«<): Let I = Cone(F) for some set of expressions E such that I C G(I). Then I C IyNpreE(I). Since
I C preE(I) then there exists a certificate A > 0 common for all transitions 7; this satisfies condition (2) of

17



Deﬁnition Now let e : ¢g+cTx be a linear expression in I. Since I C I, then e : \j+ > i [Ny, 4 (z; —
Epq () + Ao (B (i) — 2i)] = A + 22521 [(Agiy — Ag)wi + (Xy; — Ay;_1)Ep, (24)] for some non-negative
scalars )\;-. Define r; = Xy, _; — Ny;. The expectation Epy(e) = Ep, (A + i~ [kizi — kiEpy (z4)]) > 0.
Therefore, e satisfies Definition [3.5(1). Thus, E is a conic inductive expectation invariant. O

4.2 Iteration over Polyhedral Cones

Our goal is to compute the greatest fixed point of G representing the largest cone of expressions whose
generators satisfy Definition We implement this by a downward Kleene iteration until we obtain a
pre-fixed point, which in the ideal case is also the greatest fixed point of G.

(Jo: Alx) 2 (Ji: G(Jo)) 2 (Jrg1: G(Jk)) -

However, the domain CONES has infinite descending chains and is not a complete lattice. Therefore, the
greatest fixed point cannot necessarily be found in finitely many steps by the Kleene iteration. We resort
to a dual widening operator V to force convergence of the downward iteration.

until convergence: J; C J;41 .

Definition 4.2 (Dual Widening). Let I;, Is be two successive cone iterates, satisfying I; O I. The
operator V(I1,I3) is a dual widening operator if:

[ ] %(11,12) Q Il, %(11,12) Q 12;

e For every infinite descending sequence Jy 2 G(Jy) 2 G2(Jo) D -+, the widened sequence J = Jo,
J!, = J!_,VJ, converges in finitely many steps.

A common strategy to compute an approximation of the greatest fixed point when using dual widening
is to delay widening for a fixed number K of iterations.

Example 4.1. Consider a simulation of a peg performing an unbounded random walk in two dimensions
(x, y). Starting at the origin, at every step the peg chooses uniformly at random a direction {N, E, S, W}
and a random step size 1 ~ UJ0,2]. The program 2D-WALK tracks the steps (count) and the Manhattan
distance (dist) to the origin.

The following table summarizes the result of the expectation invariant analysis:

Cone Generators Constraints Cone Generators Constraints
1 1, —count, count, >0 I 1, 4 — count, count, co+4cqg >0,
0 X, —X, y, —y, dist, —dist, 0= 4 X, —X, y, —y, dist, —dist cop >0
I 1, 1 — count, count, co+ca >0, I 1, 5 — count, count, co+4cs >0,
x, —X, y, —y, dist, —dist cp >0 ° X, —X, y, —y, dist, —dist co >0
I 1, 2 — count, count, co 4+ 2c4 >0, .
X, —X, y, —y, dist, —dist co>0
Is 1, 3 — count, count, co+ 3cqa >0, I 1, count, cqg >0,
X, —X, y, =V, dist, —dist co >0 > X, —X, y, —y, dist, —dist co>0

The table shows the value of expression count is unbounded from above. To force convergence, we employ
dual widening after a predefined number (K = 5) of iterations.

Definition 4.3 (Standard Dual Widening). Let I; = Cone(gi,...,gx) and Io = Cone(hy,..., ;) be
two finitely generated cones such that I; O Is. The dual widening operator Iy VI, is defined as I =
Cone(g; | gi € I3). Cone I is the cone generated by the generators of I; that are subsumed by Is.

Example 4.2. Returning to Example we consider cone iterates I, I5. In this case generator sub-
sumption reduces to a simple containment check. Since generator 4 — count is not subsumed in /5, we
arrive at I, = [,VI; = I* = I.

Note 1. Alternatively, one can define dual widening as a widening operator [12, [1] over the dual poly-
hedron that the generators of I, Iy give rise to. On the set of PWL loop benchmarks our dual widening
approach and those based on [12] and [1] produce identical fized points where the difference in timings is
not statistically significant.

18



Table 1: Summary of results: |X| is the number of program variables; |T| - transitions; # - iterations
to convergence; V - use of dual widening. Lines (Rays) is the number of resultant inductive expectation
equalities (inequalities). Time is taken on a MacBook Pro (2.4 GHz) laptop with 8 GB RAM, running

MacOS X 10.9.1 (where £ = 0.05 sec).

Name Description | X | |T] #Itersv Eil;(gsomtl;i?; Time
MOT-EXAMPLE Motivating Example of Figurell' 3 2 2 | No 2 1 <e
MOT-EX-LOOP-INV Examplelﬁlwith added loop invariants 3 2 2 | No 2 2 0.10
MOT-EX-POLY Ex. generate poly constr (deg < 2) 9 2 2 | No 5 2 0.18
2D-WALK Random walk in 2 dimensions 4 4 7 | Yes 3 1 <e
AGGREGATE-RV Accumulate RVs 3 2 2 | No 2 0 <e
HARE-TURTLE Stochastic Hare-Turtle race 3 2 2 No 1 1 <e
COUPON5 Coupon Collector’s Problem (n = 5) 2 5 2 | No 1 2 <e
FAIR-COIN-BIASED | Simulating biased coin with fair coin 3 2 3 | No 1 1 <e
HAWK-DOVE-FAIR | Stochastic 2-player game (collaborate) 6 2 2 | No 4 1 <eg
HAWK-DOVE-BIAS | Stochastic 2-player game (exploit) 6 2 2 | No 3 1 <e
FAULTY-INCR Faulty incrementor 2 2 7 | Yes 1 1 <e

5 Experimental Results and Future Work

We present the experimental results of our prototype implementation that relies on PPL [I] for manip-
ulating the polyhedral representations of cones. Table [I| presents the summary of the experiments we
conducted on a set of probabilistic benchmarks. In [4], we present a description of these models and the
expectation invariants obtained.

In all experiments we emphasize precision over computational effort. All examples except MOT-EX-
LOOP-INV and MOT-EX-POLY run in under ¢ = 0.05 seconds, so we choose not to report these timing.
Accordingly, dual widening V delay was set sufficiently large at K = 5 to only force finite convergence
but not to speed up computation. Nevertheless, the iterations converge quite fast and in many cases
without the use of widening. Programs 2D-WALK and FAULTY-INCR require the widening (V) operator to
ensure convergence. In all cases, line generators of the final pre-fixed point yield expectation invariants
like E(e) = 0 and rays yield the invariants E(e) > 0.

5.0.1 Comparison with PRINSYS[11].

PRINSYS[I1] implements the constraint-based quantitative invariant synthesis approach developed by
Katoen et al. [14]. The tool uses a manually supplied template with unknown coefficients. The REDUCE
computer algebra system is used to perform quantifier elimination and simplify the constraints. We
applied PRINSYS with a linear template expression ; CiT; for all state variables z; in the program.
Our comparison was carried out over the 6 benchmark examples distributed with the tool. The comparison
checked whether PRINSYS could discover quantitative invariants discovered by our approach. Table
presents a summary of the comparison.

From a total set of 26 inductive expectation invariants our tool generates, PRINSYS could generate 3
of them. Notice that we had to manually provide some additional initial invariants which PRINSYS was
able to trivially, yet correctly prove invariant (denoted by asterisk in last column). Overall, we observe
that mutual inductive expectation invariants investigated in this paper provide interesting, significant
facts about the probabilistic loops in the PRINSYS benchmarks.

Next, we attempted to check whether PRINSYS can discover additional linear quantitative invari-
ants not discovered by our approach due to the incompleteness of widening. Unfortunately, this check
turned out inconclusive at the time of the experiment. The existing PRINSYS implementation automat-
ically generates and simplifies nonlinear constraints on the template coefficients. However, the process of
deriving an actual quantitative invariant requires manually extracting solutions from a set of nonlinear

19



Table 2: Summary of comparison results: IEI - invariants generated by our tool; Iters, Time - number
of iterations, time for our tool to converge; PRINSYS - was PRINSYS able to infer this quantitative
invariant.

Name IEI Iters | Time | PRINSYS
2-2b - count =0 No
BIASED-COIN 3 4x >0 6 0.0877 No
4x -3n =0 No
BINOMIAL-UPDATE (M=20) x>0 21 | 0.1337 No
1 - 7turn - continue > 0 No
COWBOYS 6 - 2turn - 6continue - 5count = 0 4 0.1146 No
x-y=20 Yes
FAIR-COIN 3-4x>0 6 0.0844 No
-4x + 3count > 0 No
x>0 No
3x - flip =0 No
GEOMETRIC x - count — 0 29 0.1988 No
count >0 Yes™
rounds > 0 Yes™
32¢ + rounds < 1600 No
UNLIMITED-MARTINGALE ctb=51 13 0.2 No
(10 additional inequalities) No

inequalities. Our manual efforts failed to find new invariants unique to the PRINSYS tool, but the overall
comparison remains incomplete since we could not arguably find all solutions manually.

Finally, it is important to observe that PRINSYS can generate invariants for templates that include
indicator functions, while our technique curently does not. Similarly, PRINSYS handles nondeterminism
in the programs, while we do not.

Ongoing/Future Work. In many of the benchmark examples we present, we found that invariants
discovered using standard abstract interpretation by treating the stochastic choices as demonic nondeter-
minism help improve the quality of our expectation invariants. Going further, we would like to combine
classical abstract interpretation with the techniques presented here to handle programs that mix non-
deterministic and stochastic choices. Finally, we demonstrate polynomial invariant synthesis in Example
MOT-EX-POLY by instrumenting monomials of fixed degree (deg < 2) as fresh variables. Our analy-
sis is thus able to generate polynomial expectation invariants such as E(4x? — 4y + y? | n) > 0, and
E(42? — 42y +1y? —y+6 | n) = 0. A sound formalization of polynomial invariant generation under relaxed
independence conditions, and generalization of this approach to higher-order moments are also part of
our future work.

Acknowledgments. The authors thank the anonymous reviewers for their insightful comments and
Friedrich Gretz for helping us compare our work with PRINSYS. This work was supported by US National
Science Foundation (NSF) under award number 1320069. All opinions are those of the authors and not
necessarily of the NSF.

References

[1] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex polyhedra.
In Static Analysis, pages 337-354. Springer, 2003.

[2] O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot. A generalization of p-boxes to affine
arithmetic. Computing, 94(2-4):189-201, 2012.

20



3]

[18]

[19]

[20]

[21]

A. Chakarov and S. Sankaranarayanan. Probabilistic program analysis with martingales. In CAV,
pages 511-526, 2013.

A. Chakarov and S. Sankaranarayanan. Expectation invaraiants for probabilistic program loops as
fixed points (extended version), 2014. Draft, Available upon request.

K. L. Chung. A course in probability theory, volume 3. Academic press New York, 1974.

M. Colén, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using non-linear con-
straint solving. In CAV, volume 2725 of LNCS, pages 420-433. Springer, July 2003.

P. Cousot and R. Cousot. Abstract Interpretation: A unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In ACM Principles of Programming Languages,
pages 238-252, 1977.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among the variables of a
program. In POPL’78, pages 84-97, Jan. 1978.

P. Cousot and M. Monerau. Probabilistic abstract interpretation. In H. Seidel, editor, 22nd Furopean
Symposium on Programming (ESOP 2012), volume 7211 of Lecture Notes in Computer Science, pages
166-190, Heidelberg, 2012. Springer-Verlag.

D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, 2009.

F. Gretz, J.-P. Katoen, and A. Mclver. Prinsys - on a quest for probabilistic loop invariants. In
QEST, pages 193208, 2013.

N. Halbwachs. Détermination automatique de relations lincaires vérifiées par les variables d’un
programme. PhD thesis, Institut National Polytechnique de Grenoble-INPG, 1979.

J.-P. Katoen, A. Mclver, L. Meinicke, and C. Morgan. Linear-invariant generation for probabilistic
programs. In Static Analysis Symposium (SAS), volume 6337 of LNCS, page 390406. Springer, 2010.

J.-P. Katoen, A. K. Mclver, L. A. Meinicke, and C. C. Morgan. Linear-invariant generation for
probabilistic programs. In Static Analysis, pages 390-406. Springer, 2011.

D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328-350, 1981.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer, New York,
1995.

P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa. Dynamic enforcement of knowledge-based security
policies. In Computer Security Foundations Symposium (CSF), 2011 IEEE 2jth, pages 114-128.
IEEE, 2011.

H. McAdams and A. Arkin. It’s a noisy business! genetic regulation at the nanomolar scale. Trends
Genetics, 15(2):65-69, 1999.

A. Mclver and C. Morgan. Abstraction, Refinement And Proof For Probabilistic Systems (Monographs
in Computer Science). SpringerVerlag, 2004.

D. Monniaux. Abstract interpretation of probabilistic semantics. In Static Analysis Symposium,
volume 1824 of Lecture Notes in Computer Science, pages 322—-339. Springer, 2000.

D. Monniaux. Backwards abstract interpretation of probabilistic programs. In Programming Lan-
guages and Systems, pages 367-382. Springer, 2001.

21



[22] D. Monniaux. Abstract interpretation of programs as markov decision processes. Science of Computer
Programming, 58(1):179-205, 2005.

[23] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[24] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for probabilistic programs:
inferring whole program properties from finitely many paths. In PLDI, pages 447-458. ACM, 2013.

[25] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Constraint-based linear-relations analysis. In
Static Analysis Symposium (SAS 2004 ), volume 3148 of LNCS, pages 53—69. Springer, August 2004.

[26] D. Williams. Probability with Martingales. Cambridge University Press, 1991.

22



6 Probabilistic Loop Benchmarks

6.1 Example of Fixpoint Computation for PWL Loops

In this section we present the application of the expectation invariant analysis to the concrete program
in Example We start with the largest possible cone of linear program expressions whose initial
expectation E(e | 0) > 0. Our goal will be to refine this cone of candidate expressions into a cone of
expectation invariant expressions.

Initially, we know the following facts: E(x | 0) = —1, E(y | 0) = 1, E(count | 0) = 0. The set of
expectation invariant candidate expressions (in PPL format) is then £ = {1,x+1,—x— 1,y — 1,1 —
y, count, —count} since E(e | 0) > 0 hold for all e € E. Therefore, Iy = Cone(E) is a finitely generated
cone of program expressions with non-negative expectations at step 0.

Next, consider the pre-expectation of e : ¢ + c1x1 + - - - + ¢ T under both transitions:

preE. (e) = co + c1(x + 0.75) + ca(y + 1.5) + c3(count + 1)
=co+ 0.75¢1 + 1.5c2 + ¢3 + c1x 4 c2y + c3count
prelE,, (e) = ¢y + c1x + cay + c3count.

Now g(Io) =1IypN preE(Io):
(AN 2 0)(vr; € T)(Fui > 0) (c) : preEr,(e) = X E+ 1l gs.

Constraints ¢g(c) are called dual (in the linear programming sense) because they constrain the coefficients
of the program expressions.

preE., (e): preE., (e):
(1) co+0.75¢1 + 1.5¢c2 +c3 = Ao+ A1 — A2 — A3 + Aq + 10p1 (5) co =0+ A1 — A2 — A3+ g — 10p2
(2) c1 = —A1 + A2 — 1 (6) c1 = —A1 + A2+ p2
(3) Cc2 = A3 — A4 — 1 (7) c2 = A3 — A4+ 2
4) c3 =5 — X¢ (8) c3 = A5 — Ag

These constraints are clearly satisfiable (even trivially satisfiable) and after performing projection we
arrive at the following set of constraints: g(c) : 6cog — 9c1 — 4eg > 0 A 3¢y + 6¢2 + 4eg = 0. The cone
described by ¢p(c) is precisely preE(Ip). Conjoining ¢g(c) to the constraints of Iy, therefore, amounts to
computing I1 = G(Iy) = Ip NpreE(lp). In other words, conjoining the constraints removes from the cone
Iy those expressions whose single step pre-expectation (even across one transition) does not belong to Ij.

The process is repeated where E is the generators of I1. The reader is welcome to verify that I, =
G(I1) = IpNnpreE(l;) = I;. Therefore, I* = Iy is the fixpoint.

Cone Generators Constraints

Io L,x+1, —x—1,y—1,
1 —y, count, —count

1, 2 — 2y + 3count, 4 4 4x — 3count, 3c1 +6¢c2 +4c3 =0,c0 —c1+c2 >0,

cg—c1+c2>0

I

—2 4+ 2y — 3count, —4 — 4x + 3count 6cog —9c1 —4c3 >0
T 1, 2 — 2y + 3count, 4 4+ 4x — 3count, | 3c1 + 6¢cg +4c3 =0,c0 —c1+c2 >0,
2 —2 4 2y — 3count, —4 — 4x + 3count 6co —9c1 —4e3 >0

Finally, confirm that every expression in I* is expectation invariant by observing that 2 — 2y 4 3count
and 4 + 4x — 3count are martingales (Cf. Section [3.2)). Therefore, every conic combination of generators
in I'* is also expectation invariant.

6.2 mot-ex-loop-inv and mot-ex-poly

Example 6.1. Consider the program in Example Figure [3] presents the same program annotated
with addition loop invariants (; ;,, obtained by running a traditional abstract interpretation analysis and

23



rand (-5,3)

real x := g1 : (H+y<1)A(-5<2)A(-3<y<1T)
real y := rand(-3,5) A0 < count) Az +y < 14A (y—ax+6>0)
int count := 0 A(2count —y +5 > 0)
@loop_invariants { A(2count —z + 3 > 0)
-5 <= x; -3 <=y <= 17; © R,
0 <= count; ) ' 3
x +y <= 14; flz y g Y+27 W-p- 3
2%count - y + 5 >= 0; a ) count’ +— count+ 1,
y - x + 6 > 0; "o x’ =X,
2%xcount - x + 3 >= 0; fa: y’ =y, Ww.p. i
¥ X count’ +— count+ 1,
while (forever) .
i (xoey < 10) g2 (x+y>10)A(-5<2)A(-3<y<1T)

ANO<count) Nz+y<14A(y—z+62>0)
A(2count —y +5 > 0)
A(2count —z + 3 > 0)

x’ — X,
sz : Y’ =y,

if £1ip(3/4)
x := x + rand(0,2)
y =y + 2
count ++
else
// Preserve x,y,count

count’ +—  count,

Figure 3: (Left) Modified version of the program in Example by adding loop invariant annotations.
These are produced by traditional (non-probabilistic) abstract interpretation; (Right) corresponding
PWL probabilistic loop where loop invariants are added to the guards of transitions.

treating fork probabilities as non-deterministic choice. This additional information allowed us to prove a
slightly richer set £ = {x + 1,2x — y + 3,4x — 3count + 4, —2x + y — 3, —4x + 3count — 4} to be a conic
inductive expectation invariant.

Consider e; : x+1, then preE, (e;) = E,, (%(x +r+1)+ %(X + 1)) =x+ %. Since 73 is the stuttering
transition it is easy to observe preE,,(e;) = e;. In the fashion of Definition and Example we
derive the following (dual) constraints:

preE, (e1): preE,,(e1):
% = )\1 -+ 3A2 -+ 4A3 — 3)\4 — 4)\5 + 10/141,1 1= Al =+ 3)\2 + 4)\5 — 3)\4 — 4/\5 — 10[14271
const +5u1,2 + 3p1,3 + 17014+ +5u2,2 + 3u2,3 + 1724+
14p1.6 + 6p1,7 + 5p1,8 + 31,9 14p2.6 + 62,7 + Spz,s + 32,9
< ].:)\14—2)\2—4)\3—2)\4—4)\5—#1,1 1:)\1—1—2/\2—4)\3—2)\4—4)\54—#271
+p1,2 — p1,6 — M1,7 — H1,9 +p2,2 — p2,6 — 2,7 — 42,9
0=—-Xo+ s — 11 0=—Xo+ s+ p21
Y +p1,3 — p1,4 — M16 1,7 — H1,8 2,3 — p2,4 — M2,6 + p2,7 — H28
0= —-3X3+ 35 0= —-3X3+ 35
count
+p1,5 + 2018 + 2019 +p25 + 22,8 + 242,90

50

The careful reader is welcome to verify the following solution: set all coefficients to 0 except A\1 = g,
Ay = %, Hi3 = %, H21 = %, H2,3 = %, Ho7 = %. As can be seen from this solution, the addition of the
loop invariants to the guards makes them more “expressive” in the sense of the (A, 1)-decomposition.

Note 2. The program in Figure@ 1s tdentical to the one in Figure (Middle) except for the added loop
invariant annotations. While these do not change the behavior of the program, they improve the results
of our analysis.

24



Fixed Point

Variety

Generators Constraints
MOT-EX y—2x,34+2x—y, =3 —2x+Yy, 3c1 4+ 6¢c2 +4c3 =0
4x + 4y — 9count, —4x — 4y + 9count cp—c1+c2>0
count, 56 — 9count, 9¢co + 33c1 + 93¢ + 56¢3 > 0,
MOT-EX-LOOP-INV —2 + 2y — 3count, 2 — 2y 4 3count

- >
—4 — 4x + 3count, 4 + 4x — 3count co—crte220

4x? — 4xy + yZ, 207x + 89x? — 98xy + 20yZ,
36x — 27count + 16x2 — 16xy + 4y?, co—c1+c2+cqg—c5+cg >0,
—36x + 27count — 16x2 + 16xy — 4y?,
6x — 3y + 4x2 — dxy + y2,

—6x + 3y — 4x? + 4xy — y?,
MOT-EX-POLY 36x — 64x2 — 80xy + 20y2 + 216xcount — 81count?,
—36x + 64x2 4+ 80xy — 20y? — 216xcount + 8lcount?,

9 — 4x? + 4xy — y?,

—9 4 4x2 — dxy + y2,
8x2 + 4xy — 4y? — 18xcount + 9ycount,
—8x2 — 4xy + 4y? + 18xcount — 9ycount

12¢1 + 24co + 16¢3 + 3cq4 + 6¢5 + 12¢6 > 0,
12¢1 + 24c2 + 16¢3 4 270¢q + 273c5 + 12¢6 + 178¢c7 = 0,
24cy 4 48ca 4 32¢3 + 6¢4 + 279¢5 4+ 1092¢6 + 356¢8 = 0,

27c1 + 54cg + 36¢3 + 207cy + 414c5 + 828¢c6 — 356¢cg = 0

The interpretation of these results is as follows: for any generator expression e inside the fixed point,
(Vn>0) E(e | n) > 0.

Finally, MOT-EX-POLY represents the original motivating program of Example where we force our
analysis to track all monomials over the program variables upto degree 2. This is done by introducing
a fresh variable for each monomial. Using this approach we were able to show interesting polynomial
inductive expectation invariants. For example, when we combine generator expressions 5 and 6, we
obtain the following fact: E((2z — y)? | n) = E(3(2x — y) | n) for all n > 0. This fact could be use to
reduce the complexity of a quadratic expression to a linear one in a larger static analysis framework.

6.3 Other Benchmark Examples
6.3.1 2d-walk

Example 6.2. The program in Figure {4] simulates a peg performing an infinite random walk in 2 di-
mensional space. The peg starts at the origin (0,0) and first picks uniformly at random a direction
{1:E;2:N;3:W;4: 5} and a uniform random displacement 7, ~ unifRand(0,2). Depending on
which quadrant the peg is in, the values of the (z,y) cooradinates and distance from origin are updated
accurately.

Our analysis was able to show the following IEL: E(count | n) > 0, E(x | n) = 0, E(y | n) = 0, and
E(dist | n) = 0, for all n > 0. This confirms the intuition and theory on random walks that in expectation
the peg does not drift, in neither direction nor total distance, far away the origin.

6.3.2 aggregate-rv

Example 6.3. The program in Figure 5| simulates the aggregation of 500 independent identically dis-
tributed draws from a uniform random distribution over the interval [0,1]. Our analysis was able to
generate the following inductive expectation invariants: E(N | n) = 500, E(i —2x | n) = 0, for all n > 0.
Combining the IEI i - 2x with the additional loop invariant i < N we arrive at the E(x) = 250 at the end
of the loop.

6.3.3 hare-turtle

Example 6.4. The program in Figure [6l models a stochastic version of Aesop’s fable about the turtle and
the hare. In this setting the hare chooses to wait until the turtle gains some significant advantage (¢t = 30
initially) before starting to ponder whether to dash. At each time step the turtle proceeds at unit pace,
whereas the hare first chooses uniformly at random whether to dash at this time instance. If he chooses
to dash, his paces is a uniform draw over [0, 10].

25



g1 : (x>20)A(y=>0)

X — x4+ ry,
fi1: dist’ —  dist 4+ rq, w.p. %
count’ —  count + 1,
real x,y, dist, count y’ = y+ri,
while (true) { fi2: dist’ —  dist + rq, w.p. %
¢ = choice (1:1/4, 2:1/4, 3:1/4, 4:1/4) Fr | count” = count 1, J
. x’ — X — T,
if (x >= 0){ s | st dist — 1
if (y >= 0) { 13 ist d ist — rq, w.p.
- g h () count’ — count + 1,
switc (¢} - b
y =y =T,
1: x,dist := (x + rl, dist + r1l) fia: | dist’ = dist — 7, w.p. +
2: y,dist := (y + rl, dist + ril) | count’ +— count+1, |
3: x,dist := (x - rl, dist - rl) g2 : (@>0)A(y<0) i
4: y,dist := (y - rl, dist - rl) x’ = x4+,
} fo1: | dist’ —  dist 4+ rq, w.p. %
} else{ I count’ — count + 1, i
I y’ = y+r,
switch (c){ foo | dist’ —  dist — 71, w.p.
X . 1
1: x,dist := (x + r1, dist + ril) . ) count’ >  count + 1,
2: y,dist := (y + r1, dist - r1) 2 [ x - x—r, |
3: x,dist := (x - r1, dist - ril) faz o | dist’ —  dist — rq, w.p. 1
4: y,dist := (y - rl, dist + rl) | count’ —  count+1, |
} y’ =y -,
} foa : dist’ — dist + 71, Ww.p. i
} else { L count’ — count + 1, 1
T _ gz : (<0)A(y=>0) :
if (y >= 0) { e — x4,
switch (c){ fa1: | dist’ —  dist — 71, w.p. +
1: x,dist := (x - rl, dist + ri1) | count’ +—  count 41, i
2: y,dist := (y + rl, dist + ril) \ = y+r1, L
3: x,dist := (x + r1, dist - ri) faz | dist’ = dist 471, w.p. g
4: y,dist := (y - rl, dist - rl) Fre | count’ = count 1, ]
} 3 x’ — X =11,
f33: dist’ —  dist + rq, w.p. %
} e]‘i{ count’ — count + 1,
switch Fc){ . y’ =y -1,
1: x,dist := (x - rl, dist + ri) f3a: | dist’ —  dist — rq, w.p. %
2: y,dist := (y + r1, dist - ri1) | count’ = count+1, |
3: x,dist := (x + r1, dist - ri1) gs  (@<0)A(y<0) .
4: y,dist := (y - rl, dist + rl) x = x4, .
} fa1 : dist’ —  dist — rq, w.p. g
} count’ +—  count 41,
y’ = y+r,
fao : dist’ —  dist —ryp, w.p. %
} F . count’ — count + 1,
count := count + 1; T4 x’ - x—r,
¥ faz : dist’ —  dist + rq, w.p. %
count’ — count + 1,
Y’ = y—T1,
faaq : dist’ — dist + 71, w.p. %
L count’ — count + 1, |

Figure 4: 2D-RANDOM-WALK (Left) Program modeling a peg on a random walk in 2D. (Right) The
corresponding PWL probabilistic loop.

Given this setup our analysis was able to show the following IEI: E(5t - 2h | n) > 0, E(2h - 5t + 50 | n) =
0, for all n > 0. This translates that in expectation (over the hare’s choice to dash or not and hare’s pace
at each instant), the turtle is no more than 2.5 times slower than the hare. Additionally, 2h - 5t 4+ 50 is
a quantity that is conserved in expectation across any number n > 0 of iterations of the loop.

6.3.4 couponb

Example 6.5. The program in Figure[7]illustrates the Coupon Collector’s Problem: Given n = 5 distinct
coupons, by choosing (with replacement) uniformly at random a coupon, what is the expected number
of coupons (count) you should draw before collecting all n = 5 coupons (i = n). This is a well known
problem where the expected number of coupons to draw grows as ©(nlogn) in the number of coupons n.
For a linearized version of the problem, our analysis showed the following inductive expectation in-
variants: E(1.111i — count | n) > 0, E(count —i | n) > 0, E(4count —5i+ 1 | n) = 0, for all n > 0.

26



x’ = x4+ 7,
real x = 0; Fry fi1: | ¥ = i41, w.p. 1
real N = 500; N = N
for ( i=0; i < N; ++i ) g2 : (I>N)
x = x + unifRand (0,1) oeox }
Frg ¢ f21 i’ — i, w.p. 1
N° — N,

Figure 5: AGGREGATE-RV (Left) Probabilistic program that accumulates 500 draws from a uniform
random distribution. (Right) The corresponding PWL probabilistic loop.

g1 = (h<H)
real h, t; . h ~— h+ry, 1
// h is hare and t is tortoise h=0;t=30; - fusl o o t 1, ] WPz
while (h<=t){ m | n =, .
if (flip (0.5) ) hesle o t“l e
h = h + unifRand (0,10); g2 : (h>1)
SR ) e

Figure 6: HARE-TURTLE (Left) Probabilistic program that models a stochastic version of the hare vs.
turtle fable. h is whimsical in deciding when to move but quick; t is slow but consistent. (Right) The
corresponding PWL probabilistic loop.

6.3.5 hawk-dove

Example 6.6. Figure [§ shows a model of a simple 2-player stochastic evolutionary game. In this game
each player chooses one of two possible strategies: a collaborative strategy Dove or an aggressor strategy
Hawk. If both players collaborate, they are guaranteed to split resources equally. In this setting Hawk
is a strictly dominant strategy, which guarantees full amount of resource for the player in case opponent
plays Dove. If both players attempt to use Hawk strategy then the outcome is stochastic: one player gets
all resources while the other suffers penalty (injury).

At every round of the game the players carefully weight the penalty for losing a fight ¢ against the
common resources v for the round and perform a stochastic choice for a strategy (player;). Next, both
strategies are evaluated and the corresponding balance of resources (pibal) is updated.

In the case of a fair balance of penalty to common resource ration (in HAWK-DOVE-FAIR), our analysis
generates the following inductive expectation invariants: E(count | n) > 0, E(count — plbal | n) = 0,
E(count — p2bal | n) = 0, E(p2gain | n) = 0, for all n > 0. The last IEI shows we can detect that the
probabilistic choice of strategy as stated is indeed an evolutionary (stochastically) stable strategy that is
also fair (no gain over other player). This last IEI cannot be established when the balance of ¢ to v is
broken (demonstrated in HAWK-DOVE-BIAS).

27



int count,i

i:= 1
count := 0
while (i>=1 & i<=2) g (1<)A(i<2) _
count := count + 1 f ! = i+ w.p. %
1 count’ +—  count + 1 P35
if (flip(4/5)) Fry Eo ) ]
ii= i+ 1 frz: | | -on w.p. &
count’ — count + 1, 5
broak g2 0 2<DAG<3) '
//Collected second coupon My il .
while (i>=2 & i<=3) fare ) o count + 1, w.p. ¥
count := count + 1 Fry N — i, 1 )
if (flip(3/5)) fo2 I count’ — count + 1, ] WP 5
i:=1+1 g3 B<)A(GELA)
break i —  i41, 2
T . f31: s w.p. £
//Collected third coupon 7, | count’ —  count+1, | 5
3 . .
1 = 1
f32: R ’ w.p. 2
while (i>=3 & i<=4) I count — count + 1, | 9
count := count + 1 g1 : (A<HAGELS)
) ; v — i1, 1
E (f11p(2/5)) fa1: count’ N count + 1, w.p. &
ii= i+ 1 Fry o oo ]
//Collected fourth coupon faz count’ s cl)unt+1 w.p. 2
) . . gs (<) ’
while (i>=4 & i<=5) i o
= F- fs1: § w.p. 1
count := count + 1 75 count’ —  count,
if (£lip(1/5))
i =131+ 1

//Collected all coupons

Figure 7: couroN5 (Left) Probabilistic program that models the Coupon Collector Problem for n = 5
coupons. (Right) The corresponding PWL probabilistic loop.

28



real plbal,p2bal = 0, O

count = 0

v = 4 // common resource, objective
c = 8 // penalty for losing a fight

while (true) { // one could choose a finite #rounds

playerl = choice (1:(c-v)/2, 2:v/2)
player2 = choice (1:(c-v)/2, 2:v/2)
if (playerl <= 1) //playerl Dove
if (player2 <= 1) //player2 Dove
//collaborators split resources
plbal := pilbal + v/2
p2bal := p2bal + v/2
else //player2 Hawk
//hawk strategy > dove, winner takes all

p2bal := p2bal + v
//dove avoids fight
plbal := pilbal

else //playerl Hawk
if (player2 <= 1) //player2 Dove
//hawk strategy > dove, winner takes all

plbal := plbal + v
//dove avoids fight
p2bal := p2bal

else //player2 Hawk
//both players fight, winner takes all
//loser suffers penalty
//outcome of fight is stochastic
if flip(1/2)

plbal := plbal + v
p2bal := p2bal - c
else
plbal := plbal - ¢
p2bal := p2bal + v
count := count + ;

Figure 8: HAWK-DOVE (Left) Probabilistic program that models a stochastic 2-player evolutionary game

fiz2:

f1a:

of Dove and Hawk. (Right) The corresponding PWL probabilistic loop.

29

count’
plbal’
p2bal’
p2gain’
count’
plbal’
p2bal’
p2gain’
count’
plbal’
p2bal’
p2gain’
count’
plbal’
p2bal’
p2gain’
count’
plbal’
p2bal’
p2gain’

1111111111111 1111111

count + 1,
plbal + %,
p2bal + %,
p2gain,

count + 1,
plbal,

p2bal + v,
p2gain + v,
count 4 1,
plbal + v,
p2bal,

p2gain — v,
count + 1,
plbal + v,
p2bal — ¢,
p2gain —c — v,
count + 1,
plbal — c,
p2bal + v,
p2gain + c + v,

w.Dp.

=
o

[
|

-
o

o)
|

=
=Y

o)
Y

o

2



	Introduction
	Preliminaries
	Probabilistic Loops
	Operator Semantics
	Pre-Expectations

	Expectation Invariants
	Definitions and Examples
	Martingales and Expectation Invariants
	Proving Expectation Invariance

	Conic Inductive Expectation Invariants
	Pre-Expectation Closed Cones

	Expectation Invariants as Fixed Points
	Proof of Theorem 4.1
	Iteration over Polyhedral Cones

	Experimental Results and Future Work
	Comparison with PRINSYSGretz2013prinsys.

	Probabilistic Loop Benchmarks
	Example of Fixpoint Computation for PWL Loops
	mot-ex-loop-inv and mot-ex-poly
	Other Benchmark Examples
	2d-walk
	aggregate-rv
	hare-turtle
	coupon5
	hawk-dove



