
To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

WebSplitter: A Unified XML Framework for Multi-Device
Collaborative Web Browsing

Richard Han, Veronique Perret, Mahmoud Naghshineh
IBM Thomas J. Watson Research Center

30 Saw Mill River Road
Hawthorne, NY 10532 USA

(914) 784-7608
{ rhan,perret,mahmoud} @us.ibm.com

ABSTRACT

WebSplitter symbolizes the union of pervasive multi-device
computing and collaborative multi-user computing.
WebSplitter provides a unified XML framework that
enables multi-device and multi-user Web browsing.
WebSplitter splits a requested Web page and delivers the
appropriate partial view of each page to each user, or more
accurately to each user’s set of devices. Multiple users can
participate in the same browsing session, as in traditional
conferencing groupware. Depending on the access
privileges of the user to the different components of content
on each page, WebSplitter generates a personalized partial
view. WebSplitter further splits the partial view among the
devices available to each user, e.g. laptop, wireless PDA,
projection display, stereo speakers, orchestrating a
composite presentation across the devices. A wireless PDA
can browse while remotely controlling the multimedia
capabilities of nearby devices. The architecture consists of
an XML metadata policy file defining access privileges to
XML tags on a Web page, a middleware proxy that splits
XML Web content to create partial views, and a client-side
component, e.g. applet, enabling user login and reception of
pushed browsing data. Service discovery finds and
registers proxies, browsing sessions, and device
capabilities. We demonstrate the feasibility of splitting the
different tags in an XML Web page to different end users’
browsers, and of pushing updates from the browsing session
to heterogeneous devices, including a laptop and a PDA.

Keywords
Collaboration, co-browsing, multi-device, wireless, PDA,
proxy, groupware, XML, service discovery, middleware,
remote control, pervasive, partial view

1. INTRODUCTION
Collaborative Web browsing with multiple users combines
the traditional field of collaborative or conferencing
groupware, also known as computer support for cooperative
work (CSCW), with the Web. Collaborative Web
browsing, also called co-browsing, has been demonstrated
commercially by WebEx.com [WebEx], www.uGoCo.com,
www.icq.com, www.crowdburst.com, www.n2g.com,
www.netdive.com, and Netscape Conference [Netscape], as
well as academic projects such as UNC’s CobWeb
[Stotts97]. RealNetworks’ Real Presenter allows multiple
recipients to view a PowerPoint presentation on the Web
[Reala]. Microsoft’s NetMeeting [Microsoft] allows
participants to collaborate and share Windows documents
in real time over the Internet.

WebSplitter adds two themes to collaborative Web
browsing: creating personalized partial views of the same
Web page based on each user’s access privileges; and
creating a composite view of a Web page spread across the
set of multimedia devices accessible to each user. The
creation of partial views and multi-device composite views
is based on the observation that XML tags can be
selectively filtered on an individual tag granularity to create
sub-documents or partial views. The same XML-based
mechanism can be used to create a partial view based on
user identity and/or device characteristics. A partial view
of an XML page is first constructed based on a user’s
access privileges to the content in the page. If a user has
access to multiple devices, then the partial view is further
subdivided into separate XML components that are then
delivered to each of the user’s locally available devices to
form a composite presentation. WebSplitter provides a
unified XML framework enabling both multi-device and
multi-user Web browsing.

A key design goal of WebSplitter is to enable the
presentation of different partial views of the same Web
page to different users. We wish to remove the restriction
that every member of the audience receives the same

To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

 2

identical Web page as the presenter. To the authors’ best
knowledge, the previous examples of collaborative Web
browsing reproduce the same Web page on each user’s
browser. Presenting different partial views of the same
Web page is helpful in multiple ways. First, if a lecturer
has private reminder notes annotating each slide in a Web
presentation, then the lecturer may wish to receive the
private notes for each slide and yet also wish to prevent
others in the general audience from receiving these notes.
Second, each Web page in the slide show may contain

forward/backward navigation buttons that the lecturer
wishes to prevent the audience from receiving; otherwise,
the members of the audience could change the course of the
lecture against the presenter’s wishes. Third, a lecturer
controlling a Web presentation via a wireless PDA would
not wish to impose the PDA’s representation of the Web
page on the other members of the audience. Fourth, partial
views can be used to enable different levels of customized
instruction for different pupils following the same
instructional Web browsing session. These different levels
of access privilege can also be used to implement parental
control levels.

A second key design goal of WebSplitter is to enrich the
browsing experience of a resource-limited device, such as a
wireless PDA, by allowing that device to take advantage of
the multimedia capabilities of other devices in the vicinity.
Ubiquitous computing devices [Want95], e.g. a wireless
PDA, wearable computer, a WAP-enabled cell phone, may
have a small screen and may lack other features, e.g. audio

output. The customary assumption in these examples is that
the output results for either information access or peer-to-
peer communication are returned only to the single mobile
device that requested the information. To address the
limitations of mobile devices, prior work has proposed that
information content be adapted to the constraints of the
mobile device, e.g. transcoding of Web pages for display on
PDA’s [Fox98, Han98].

In this paper, the limitations of the mobile device are
compensated for in a different manner. Rather than confine
the output results of an information query to the lone
requesting mobile device, WebSplitter enables the output of
Web browsing to be spread or split across multiple devices
with stronger multimedia capabilities. For example, a
wireless PDA that lacks audio output is enabled by the
WebSplitter application to exploit a stereo speaker in the
vicinity for playback of the audio component of each
downloaded Web page. Similarly, if there is a projection
display in the room, then the WebSplitter application
enables the PDA to redirect part of the output of its Web
browsing session onto the large display. In addition,
WebSplitter may send a transcoded version of each Web
page to the PDA for remote control purposes. Since each
Web page is in effect being split for presentation to
multiple output destinations, we have named our design
WebSplitter.

Figure 1 illustrates integrated multi-user multi-device Web
browsing. The session presenter in the upper right requests
a Web page whose contents are then split to multiple
participants in the joint browsing session. Collaborative
browsing is useful for a variety of Web-based presentations,
e.g. a teacher presenting a Web-based lecture to multiple
students, or a CFO presenting a quarterly financial report to
a group of stock analysts on a conference call.
Personalized partial views are constructed for each
individual. For example, the user with the PDA in the
lower right receives only the graphical slide portion of the
page (in fact, only a transcoded version) rather than the
complete view of the Web page shown in the upper left.
The ability of WebSplitter to orchestrate a composite
presentation across multiple devices is shown in the upper
right. Multiple components of the original page are split for
simultaneous presentation and/or playback on a nearby
projection display and stereo system, in addition to the
requesting PDA. In this way, the capabilities of the
wireless PDA are extended, and the session presenter can
be viewed as using the PDA as a remote control for the
entire browsing session.

The author of a Web page guides WebSplitter in the
creation of partial views through the mechanism of a
metadata “policy file” . Accompanying each Web page is a

Figure 1. The output of a multi-device collaborative Web
browsing session is split to multiple output devices owned by a
single user (upper right), as well as to multiple different users,
all following the Web browsing of a session presenter (upper
right).

To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

 3

separate policy file that contains the rules for mapping
hypertext tags, possibly aggregated, to “privilege groups” .
A policy file may define multiple privilege groups for a
given page. For each privilege group, the policy file lists
the hypertext components in the Web page that each
privilege group may receive. Each individual who
subscribes to a collaborative browsing session provides
some identification to the WebSplitter application, by
password or otherwise, that classifies the individual as
belonging to a particular privilege group. By assigning
different subsets of hypertext components to different
privilege groups, the author can create partial views of the
same Web page for different members observing the same
collaborative Web browsing session.

A service discovery middleware component provides the
abstraction necessary both to enable WebSplitter to
discover devices, and conversely to enable users to discover
the WebSplitter application. WebSplitter must be able to
discover users and their associated output devices so that
Web content can be split to the proper destinations.
Protocols such as SLP (Service Location Protocol)
[Veizades97], Jini [Waldo99], Microsoft’s Universal Plug
and Play [UPNP], and others [Salutation] [Bluetooth], have
been introduced to solve the problem of device discovery.
Conversely, each user must be able to discover the
WebSplitter application and ongoing browsing sessions.
Session discovery solutions are addressed by standard
conferencing groupware. These issues are further discussed
in Section 3.

In related work, the VIEW Media conferencing system
creates partial views of the same hypertext document based
on access rights of individual users [Yokota99]. VIEW
Media shares our view that a hypermedia document consists
of multiple components. VIEW Media appears to achieve
partial views by hiding data via overwriting, rather than
splitting and filtering Web content as we have proposed.
The authors’ approach does not appear to be based on
XML, nor to address the notion of splitting Web content to
multiple devices. The CAT (collaborative active textbooks)
system allows multiple users to see different partial views
of the same Web animation show [Brown96]. The system
is specific to Web pages supporting the animation
application.

Prior work on remote control of applications via a PDA has
focused on controlling a video conferencing application
[Hodes99a] as well as providing a framework for
controlling lights and stereo components [Hodes99b]. Our
work shares the theme of using XML to enable remote
control but differs in our focus on Web browsing,
simultaneous presentation across multiple devices, and
creation of per-user partial views. In CMU’s Pebbles
project, a PDA is used to control a single PC’s screen and

various PC applications, including PowerPoint as well as a
Web browser [Myers98]. Our work differs in our emphasis
on controlling multiple output devices. Stanford’s
Interactive Workspaces project [IWork] investigates user
interaction with multiple devices and sensors in a room, but
to our knowledge has yet to publish their work. Multi-
device user interfaces have been proposed in which a user
can “pick” an object from a PDA and “drop” it on a PC
screen or digital whiteboard [Rekimoto98]. Our work
differs by focusing on the Web, and by enabling a PDA to
simultaneously control multiple devices. Other work has
focused on partitioning of a user interface between a PDA
and a single other device [Robertson96].

In the remainder of the paper, we describe the architecture
of WebSplitter as well as our implementation experience.
The collaborative multi-device Web browsing architecture
consists of a server-side metadata policy file (Section 2), a
middleware proxy (Section 3), and a client-side applet
(Section 4). Section 5 summarizes the progress of our
implementation, and our experience with the feasibility of
Web splitting.

2. SERVER-SIDE AUTHORING OF XML WEB
CONTENT AND THE XML POLICY FILE
.

2.1 The XML Web page
The full capabilities of the multi-device Web browsing
proxy will only be exercised when the Web page is written
in XML. XML is highly appealing due to its flexibility.
Each author defines their own tags. This allows
WebSplitter to split the XML document at the granularity
of tags, grouping tags into independent components and
sub-documents that can be sent to selected devices. While
HTML can be also be split by the multi-device Web
browsing proxy, tag-granularity splitting of the content is
not a realistic option. HTML tags are standard and rigid:
the user cannot give meaning to those tags. For example, if
the user wants to include two images in a document, HTML
only provides the IMG tag to do so, even if the two images
have totally different purposes. In a slide presentation, the
picture representing the navigation bar and the picture
representing the slide have two different roles in the
structure of the document; the navigation bar is for control
while the slide is the actual data to be displayed.

Our intent is for each uniquely named tag on a page to have
its own demultiplexing policy describing the output devices
to which the tag may be delivered. We rely on XML’s
ability to uniquely define the name of each tag, and on XSL
to define the usage of each tag. An XSL document is
needed by an XML-enabled browser to transform the
customized XML into a language that a browser can render,
e.g. formatted XML, HTML, WML.

To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

 4

Consider the following example of the XML Web page for
a group slide presentation as shown in Figure 2. A lecturer
has authored a Web presentation that is stored on a Web
server and desires to show this presentation to other users,
perhaps in a telephone conference, conferencing room, or
lecture hall. The lecturer possesses a wireless PDA and a
laptop. The lecturer desires to navigate the presentation via
a wireless PDA, in order to have freedom to roam.
Simultaneously, the lecturer wishes to have the graphical
slides appear on the lecturer’s laptop so that they may be
projected on to the lecture hall’s large screen. Also, lecturer
wishes to hide reminder notes and navigation buttons from
the audience. In this case, the navigation bar with
forward/back buttons and private notes should be sent to the
lecturer’s PDA. Only the graphical slide should be sent to
student members (possibly transcoded if students own
PDA’s). There are four components to the Web page
shown in Figure 2: navigation buttons; graphical slides,
private notes; and audio. The XML file used to describe the
non-audio components of such a page could look like
Figure 3. The document has a header portion with a title
(tag <title>) and a navigation bar (tag <nav_bar>) and two
body portions containing the slide (tag <picture>) and
private notes (tag <notes>). We have not shown the
accompanying XSL file.

2.2 The XML policy file:
In addition to the XML Web page and XSL style sheet, the
author may optionally write a metadata policy file that

annotates the original XML page and defines mapping rules
governing which XML tags should be distributed to which
privilege groups and which devices. The policy file
provides the information that enables the WebSplitter
application to determine what portions of a Web
presentation may be seen by which users. The policy file
defines privilege groups, and then defines what subset of
XML tags each privilege group is permitted to receive. The
author can use the policy file to limit certain groups to
receiving only a partial view of the Web presentation, while
granting full access privilege to other viewers.

Privilege groups provide a mechanism for differentiating
the access privileges of participants. Partial views of a
Web browsing session belong to different privilege groups.
The author of a Web page may wish to give some user
groups higher or lower privileges to access certain XML
tags than other groups. Figure 4’s sample policy file
realizes the mappings desired in Figure 2. Two groups are
defined: lecturers and students. A lecturer who is
collaboratively presenting an e-class limits students to
seeing only a subset of the tags on each presented Web
page, i.e. the lecturer prevents the students from seeing
private reminder notes (<notes> tag is not available to
students), and prevents the students from accessing the
navigation controls to the lecture (<nav_bar> tag is not
available to students).

Lecturer

Student 2

Student 1

Audio

Navigation
Bar

SlidesNotes
Figure 2. XML tags/components in a Web document (e.g. notes,
navigation buttons, graphical slide, and audio) are separated and
delivered to different users, according to user preferences and
access privileges, and then are further subdivided for delivery to
different devices owned by a single user (e.g. session presenter).

<?xml version="1.0"?>
<?xml:stylesheet type="text/XSL" href="present.XSL"?>
<presentation>
 <head>

<title>The Transcoding Proxy</title>
 <nav_bar xml:link="simple"

 href="nav_bar.gif"/ >
 </head>
 <slide>

<picture xml:link="simple" href="transco.gif"/>
 </slide>
 <notes>
 text...
 </notes>
</presentation>

Figure 3: A sample XML Web page from the Web slide
show presentation of Figure 2. The three main tagged
components on the page are the navigation buttons
(<nav_bar>), the graphical slide (<slide>), and the private
notes (<notes>).

To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

 5

The policy file is written in XML syntax. The author
benefits by not having to learn a new syntax, and the
WebSplitter proxy benefits by being able to reuse its XML
parser for Web pages to interpret policy files. The XML
syntax within the policy file must be standardized, i.e. we
need to define our own XML namespace or schema to
standardize the tags and values used in those policy files.
In the following, we propose to use the namespace prefix
cmdb (collaborative multi-device browsing). All authors
should use the standard tag name “group” in order that all

WebSplitter proxies understand that a privilege group is
being defined. Our sample XML policy file includes the
following proposed standard tag names: group, device,
taglist, undefinedtag_list, media_types, images, and text
(video and audio not shown). In addition, each tag has its
own unique attributes, e.g. the group tag has the attributes
“name” , “password” , and “ input_permitted” (explained
later). Finally, while the value of the attributes “name” and
“password” need not be standardized, the values of certain
attributes must be standardized, e.g. input_permitted must
have standardized values set to either “yes” or “no” --
otherwise different authors will use true/false, on/off, 1/0.
The naming of devices also needs to be common over
devices, so that the proxy can universally associate
capabilities with a device name.

We introduce an attribute capability to the device tag to let
the author specify the capabilities of the device. For
example, the author writes <cmdb:device
capability=” sound_card” >, meaning that for any device
that has a sound card, the following set of tags can be sent.
It is even more crucial here to standardize the values of the
capability attributes so that the proxy can match them with
what it retrieves from service discovery. The proxy will
learn the capabilities of the devices from the various
attributes registered in the service discovery database for
each device. If there’s no standard vocabulary to describe
the capabilities, we cannot interpret this information. The
W3C draft “Composite Capability/Preference Profiles
(CC/PP)” has followed the approach of globally
standardizing the characteristics of devices [W3C].

In order to determine whether or not an XML Web page has
an accompanying policy file, the proxy must parse the XML
page that has been retrieved. If the proxy finds a reference
to the policy file, then the WebSplitter proxy must fetch the
policy file. The mechanism for embedding the policy file
reference in the XML follows the method for referencing a
stylesheet document from XML An XML document
indicates which stylesheet to use with the following type of
processing information, <?xml:stylesheet type="text/XSL"
href="present.XSL"?>. In the same way, we propose to
use a processing instruction like <?xml-cmdb href =
“ location of policy file” ?>. The multi-device Web
browsing proxy recognizes this instruction and retrieves the
file located at the address specified in the href attribute.

The input_permitted tag controls which users have the right
to change the Web page shown to the rest of the browsing
members. The mechanism was added to protect the session
presenter from audience members that otherwise could
maliciously change the course of the presentation. This is a
crude form of floor control, and we have not pursued this
aspect of the design further.

<cmdb:group name = ” lecturer” password = ” YYYYY”
input_permitted = “ yes” >
 <cmdb:device name = “ IE||Netscape” >

<cmdb:taglist> presentation, head, title, nav_bar,
 slide, picture</cmdb:taglist>
<cmdb:undefinedtag_list>images, text, audio,

video<cmdb:undefinedtag_list>
 </cmdb:device>
 <cmdb:device name = “ PocketIE” >

<cmdb:taglist>presentation, head, title, nav_bar,
 notes</cmdb:taglist>
<cmdb:undefinedtag_list>text</cmdb:undefinedta

g_list>
 </cmdb:device>
</cmdb:group>

<cmdb:group name = ” students” password = ” ZZZZZ”
input_permitted = “ no” >
 <cmdb:device name = “ IE||Netscape” >
 <cmdb:taglist> presentation, slide, picture

 </cmdb:taglist>
<cmdb:undefinedtag_list>images, text, audio,
 video <cmdb:undefinedtag_list>

 </cmdb:device>
 <cmdb:device name = “ PocketIE” >

<cmdb:taglist> presentation, slide,
 picture(transcoded)</cmdb:taglist>
<cmdb:undefinedtag_list>text
 </cmdb:undefinedtag_list>

 </cmdb:device>
</cmdb:group>

<cmdb:media_types>
 <cmdb:images>
 <cmdb:taglist>nav_bar, slide, picture</taglist>
 </cmdb:images>
 <cmdbtext>
 <cmdb:taglist>title,notes</cmdb:taglist>
 </cmdb:text>
</cmdb:media_types>

Figure 4: A sample XML policy file defining multiple
privilege groups and the tags permitted to be received by
each privilege group, using the tags defined in Figure 3.

To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

 6

In several cases, undefined tags will be encountered by
WebSplitter. We have incorporated the tag undefined_tag
into the policy file’s syntax to provide an indication about
how unknown tags are to be mapped to devices. The tag
undefined_tag specifies the list of media types that are
permitted to be sent to each combination of privilege group
and device. This form of media-based splitting is
suboptimal, but the proxy has little option other than to fall
back to this coarse-grained form of page splitting.
Undefined tags will be encountered when an HTML
document is accessed, or an XML document containing tags
not listed in the original policy file is encountered.

3. MULTI-DEVICE WEB BROWSING PROXY
WebSplitter’s document-splitting function is placed in a
proxy. The proxy utilizes the policy and XML files written
by the author to establish a multi-device browsing session
and control the ad-hoc collaboration between devices. The
proxy can flexibly reside anywhere in the network, i.e. near
the server, intermediate between client and server, in the
same room as the user, or even on the user’s body. The
proxy also has the capability to limit the processing
conducted on thin clients, which only need to run a small
applet-like program to participate in a joint browsing
session. The proxy can also perform prefetching of files
(images, audio files…) without waiting for an end-user to
request them, thereby improving responsiveness.

3.1 Establishing and joining browsing sessions
Figure 5 summarizes the steps involved in establishing a
multi-device collaborative browsing session in a
WebSplitter proxy. The proxy registers itself (1) to the
service discovery database so that a client can find the
proxy (2). Next, the session creator clicks on the desired
proxy’s hyperlink (3) and the proxy returns a session login
menu requesting the session name and URL of the first
XML Web page (4). Then, the proxy pulls the requested
XML page (5) and its associated policy file (6) into the
proxy. The proxy parses the XML page and policy file to
create privilege groups (7), then sends to the session creator
a login menu requesting username and password (8). After
matching the session creator to a privilege group, the proxy
announces the new session to service discovery and
requests any devices registered by the session creator (9).
Finally, the portion of the requested XML page that the
session creator is permitted to receive is returned to the
session creator (10).

Figure 6 summarizes the steps involved in joining an
ongoing browsing session. Each new device that wishes to
participate in the session first registers its capabilities and
its owner to the service discovery database (SDDB), and

then queries the SDDB to discover existing proxy sessions
(11, 11’ , and 11’ ’ (advertise only)). Next, each browser-
enabled device connects to the proxy (12, 12’), and logs in
for the session (13, 13’). User login triggers the proxy to
contact the SDDB to discover all devices registered to the
newly logged-in user (14, 14’). Finally, the proxy
demultiplexes the appropriate Web objects to the

Service
Discovery

DB

PROXY

Session Creator's laptop

Policy
file

8

1

7

XML
&

Policy
 file

Web
Server

2
4

9

5
XML

6

3
Login

XML or
HTML

10

Proxy A Econ 101
CS262
Teleconf-IBM

Proxy B NetChess
JSmith&friends

Proxies Sessions

Figure 5: Procedural steps for establishing a session of
collaborative multi-device Web browsing.

Service
discovery

DB

PROXY

Session Browser's
Laptop

XML and
Policy file

14 & 14'

13 12

XML
&

Policy
 file

Printer

PDA laptop

11

11'

15

Web
Server

15'
13'

12'

15''
11''

User xUser y

User x

PDA
laptop 2...

User y

laptop
1...

Proxy A

Session 1
Session 2
Session 3

Proxy B

Session 1
Session 2

public

printer
projector...

Figure 6: Procedural steps for joining an existing collaborative
multi-device Web browsing session.

To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

 7

appropriate end clients/users (15, 15’ , 15’ ’).

3.2 Building tag mapping rules from the policy file
At session establishment, the proxy fetches the Web page
specified by the session creator. If there is a reference to a
policy file in the parsed Web page, then the proxy
downloads and parses the XML policy file from the Web
server. The policy file specifies what subset of XML tags
each privilege group and device is permitted to receive. At
this point, the proxy only has general information on what
tags each group is allowed to receive. It has not yet built
any policy for mapping tags to specific users. In order to
build a complete mapping, the proxy still needs each user to
login via password and identify themselves as a member of
a given privilege group. Each subscribing user indicates
their group membership during login either by providing a
password or by selecting a non-password-protected group.
The policy file defines a unique password for each privilege
group. When the user provides a password, it is matched to
a unique privilege group. We assume that the password is
known to the user in advance via some out-of-band method.
Combining those two sources of information, the proxy will
dynamically build rules that map permitted tags to users.

As a final refinement of the tag mapping rules, the proxy
needs to map XML tags to each of the multiple devices
accessible to each user. The proxy queries service
discovery to retrieve the list of registered output devices
owned by a particular user. This list contains the access
method required by each device, so that the proxy knows
the multimedia format and communication protocol with
which to send Web components to each specific device.

3.3 Generating receiver menus, partial views, &
panels
A session creator receives two login screens, a session login
menu (Step 4) and a user login menu (Step 8). A subscriber
to an existing session receives only the single user login
menu (Step 13). The session login menu asks for the name
of the session to be established and the URL of the first
page to be downloaded. This URL indirectly specifies the
initial policy file used to define privilege groups for the
session. Using the information found in the policy file, the
proxy builds a customized user login menu. The user is
asked to enter a username and password. These two fields
are used by the proxy both to identify the privilege group of
the user/subscriber and to find registered devices. The
proxy queries the SDDB for a list of output devices
registered under that username, so the provided username
must match the registered username. If there is a difference
in usernames, then the proxy will be unable to associate the
devices with their proper owner. At this point, the proxy
can build the mapping of XML tags to devices. This

internal mapping is also exposed to the end user for
customization, as discussed later in Section 4.2.

Some privilege groups can be openly accessible without
passwords. For example, we wish to allow unknown
audience members to subscribe to public presentations, e.g.
press briefing, without requiring a priori knowledge of the
password. Public non-password-protected groups are
shown with a checkbox next to them in the user login menu.
The password defined in the policy file is encrypted, as is
the response to the login menu, to ensure security.

Following user login and retrieval of the user’s list of
devices, the proxy will have sufficient information to
construct mappings of XML tags to a user’s devices. The
tag mapping rules combine to form a sub-document or
partial view of the original Web page. The proxy needs to
construct the appropriate transformation file, e.g. XSL style
sheet, that transforms XML to a renderable description like
HTML, WML, or even a non-browser device like a
speaker. The transformation file built for each client should
take that into account to produce a sub-document in the
right format. We leverage XSL’s power to select tags in the
original XML to lay out the sub-document for ultimate
presentation on the user’s device.

In addition to the partial view, a control panel is also
downloaded to browser-enabled devices. For those
supporting multiple windows, e.g. standard browsers,
WebSplitter opens two windows at the receiver, one for
displaying the partial view of a Web page and a second for
displaying a control panel. The control panel contains
multiple buttons. First, a “ logout” button can be pushed to
inform the proxy to remove this user from the joint
browsing session and delete all state, e.g. transformation
files and tag mapping rules, associated with that user.
Second, a “personalization” button can be pushed that pops
up a third window with the menu shown in Figure 7. This
third window enables the user to customize how Web
content is demultiplexed to the user’s various devices. We
are investigating a solution for PDA’s that doesn’ t support
multiple windows.

3.4 Interacting with service discovery
Service discovery is used throughout the design, in Steps 1,
2, 9, 11, and 14. WebSplitter adopts the model that service
discovery operates as a single abstraction that provides the
means for discovery and registration of proxies, sessions, as
well as users’ devices. Each WebSplitter proxy registers
itself and its ongoing browsing sessions to the abstraction.
Each output device registers itself and identifies its owner
to the abstraction. Users desiring to establish a new
WebSplitter session query the abstraction to find a list of
registered proxies. A user interested in subscribing to an

To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

 8

ongoing joint browsing session sends a query to the
abstraction to find existing WebSplitter sessions. The
proxy queries the abstraction to retrieve the list of devices
owned by each user in the session. The service discovery
abstraction essentially provides an API to WebSplitter that
supports two functions, namely register() and query(). The
abstraction isolates our application from the details about
how these two functions are implemented. Similarly, the
application need not know whether the service discovery
registry, or SDDB, is concentrated in a single server or
distributed among multiple servers. The WebSplitter
application relies on service discovery to provide
geographic scope and locality. Wide area support will
permit distance learning by remote students, who are able to
discover the collaborative browsing sessions, and whose
devices are in turn discovered by the proxy after login. For
our initial prototype, we have deferred wide-area questions
and assumed that only users who are within close proximity
to the WebSplitter proxy will be able to take advantage of
the Web-splitting functionality.

4. CLIENT-SIDE FUNCTIONS

4.1 Pushing data to the client
Each time a session presenter requests a new page, this
update must be pushed to all subscribed browsers and
devices, e.g. speakers or TV screen, so that each subscriber
is synchronized with the joint presentation. Ideally, we
would like to avoid modifications to client-side code and
leverage existing browser technology. Two approaches
could be used to push data to the end browser: server push
or client pull. In server push, the server sends down a
chunk of data; the browser displays the data but leaves the
connection open; whenever the server wants, it sends more
data and the browser displays it, leaving the connection
open. In client pull, the server sends down a control
message, possibly a directive (in the HTTP response or the
document header), that says "reload this data/URL in 5
seconds". After the specified amount of time has elapsed,
the client does what it was told -- either reloading the
current data or getting new data. The continuous polling
overhead of pulling clients makes server-push more
efficient.

Java provides a push solution for Netscape, IE and more
generally for all Java-enabled browsers: it is to use an
applet which will listen for notification from the proxy and
tell the browser to show a document with the URL sent by
the proxy. This approach is a hidden client pull but made
more flexible by the presence of the applet which is notified
of when new data is available. The page is not refreshed at
regular intervals, but only when new data is available.
Rather than writing different client-side code relying on
vendor-specific push solutions for Netscape (plug-ins) or

Microsoft (Active X), we write one applet capable of
implementing data-push on any Java-enabled browser. We
have not found a universal push solution for browsers that
don’ t have Java capabilities. This is the case of most PDA
browsers: Pocket IE for WinCE devices or browsers like
Palmscape or HandWeb for Palm Pilots. WAP-enabled

WML browsers intend to support data push [WAP], but this
technology is still in the development stage. For WinCE
devices, we have implemented an HTMLviewer control.
An HTMLviewer control relies on a library provided by
Microsoft. It implements version 3.2 of HTML and is the
basis of Pocket IE. Our control is able to accept data push,
receive Web content and display it on the WinCE device.

4.2 Customizing the XML tag mapping rules
The default mapping of permitted tags to permitted output
devices generated by the proxy may not satisfy the end user.
Therefore, WebSplitter exposes this default mapping to the
end user to allow the user to customize where Web
components are sent and displayed. For browser-enabled
devices, a customization applet is downloaded to enable the
user to change the distribution of components among the
devices. Conceptually, each tag is permitted to be sent to a
list of permitted output devices, as shown in Figure 7. The
user can choose to overrule default mappings and redirect
some components to another device, or redesign the sub-
documents created at the proxy. In practice, rather than
redirect graphical arrows, a nested hierarchy is shown in
which each output device has a list of tags that are being
sent to that device. In the spirit of ad-hoc collaboration,

 �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

Permitted tags Permitted output devices

(image) <slides>

(audio) <audio>

(text) <notes>

(image) <nav_bar>

laptop "name" (images, text,
video, audio)
PDA "name" (images, text)
stereo speakers "name" (audio)

Owner X:

desktop (images, text, video,
audio)
cell phone (audio)

projector "name" (images,
text, video)
printer "name" (images, text)

Group Y:

Public:

Personal Configuration Screen:

Mappings

Submit

Refresh

Figure 7: Conceptual model of a personalized configuration
screen enabling the end user to customize the mappings of which
tags are delivered to which end devices and which users. The
arrows signify that a given tag is to be sent to a given device.

To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

 9

new devices can be added to and removed from the list of
permitted output devices in Figure 7. Pushing the “refresh”
button signals the proxy to query for any devices that have
entered/left the vicinity. This allows the user to register a
device after joining an ongoing session without losing the
customization choices already made. The personal
configuration screen is invoked within the control panel
mentioned in Section 3.4.

5. IMPLEMENTATION STATUS
Our initial prototype focused on browser-enabled clients.
Our implementation is primarily concerned with
demonstrating the feasibility of splitting an XML Web page
to multiple users as well as multiple devices. We have
implemented Steps 3-8 and Step 10 shown in Figure 5, as
well as Steps 12, 13, and 15 in Figure 6.

For each user, we generated a partial view in two phases.
In the first phase, we generated from the original XML0
page a “sub-document” XML1 containing a subset of XML
tags. To ease the task of eliminating tags, we used an XSL
transformation engine called xalan, rather than create our
own parser. The policy file is used to dynamically build an
XSL file, XSL1. XSL1 and XML0 are then both fed as input
into the transformation engine to generate a sub-document
XML1 containing only the tags that the user is permitted to
and equipped to receive, i.e. a subtree of the initial tree.

In the second phase, our goal was to produce from XML1 a
new partial view document that was in a format
understandable by the intended end device. Again, we
chose XSL as the transformation file because it is
applicable when the partial view should be in a markup
language like WML, HTML, XML or even for a pdf output
file. In order to respect the style of the author, this second
XSL transformation is based on the original XSL document
XSL0 if it exists. At this point, we run into a problem if we
apply XSL0 directly to XML1, because some of the tags
referenced in XSL0 no longer exist in XML1. For example,
the XSL could be: use the following text as a link whose
URL will be defined from an attribute of the tag T. But if
tag T has been removed from the XML, no value will be
found and there will be an undesirable line of text in the
resulting document. To avoid this problem, we could
choose to generate a new XSL2 (derived from XSL0) that
only referenced the subset of tags contained XML1.
However, this introduces its own problems. XSL can
contain relative paths to tags (e.g. ./ or ../). This makes it
complex to remove all references to the unwanted tags. Our
solution was to apply the original XSL0 to the subset XML1,
and write the XSL0 in a special way that linearly referenced
XML tags; no relative path is used and we define the action
to be taken with each XML tag in a separate template
element.

Our current prototype demonstrates the feasibility of
splitting an XML Web page to multiple users with different
devices, according to rules specified in a policy file. We
have written a sample XML Web slide show patterned after
Figure 2, as well as the associated XSL and XML policy
files. The proxy downloads the XML Web page, parses it,
and then requests the policy file, parsing the definitions of
multiple privilege groups to generate XSL1. We have
verified that multiple users can log into the proxy and are
identified as belonging to different privilege groups. The
proxy generates different XSL files for different privilege
groups and thereby is able to construct different partial
views of the initial document for members of different
groups. We have also successfully implemented the data-
push protocol via an applet to enable joint browsing from a
PDA.

Using a manual method of logging into a WebSplitter
proxy, we have been able to demonstrate the splitting of a
Web document to several users as well as to several
browser-enabled devices: a user having a laptop and a
desktop can use the personalization applet to customize the
way the Web components are dispatched. Two users
belonging to different groups receive different views of the
same document. The two pictures of Figure 8 are screen
captures of what a subscriber received with the multi-device
Web browsing. The first picture shows the screen of a
WinCE device that has been pushed via the HTML viewer
data-push mechanism a version of the presentation that
includes both the navigation bar (originally an image, now
transcoded into text links) and the lecture’s private
reminder notes. The WinCE device has been transformed
to act as a remote control for the joint browsing session.
The lower picture shows the browser window received by a
second user. Only the graphical slide is shown.
Consequently, the policy file has successfully designated
that the Web objects to which this user doesn’ t have access
must be filtered out, and a partial view of the Web
presentation has been generated by the proxy.

Our initial implementation of multi-device Web browsing
employs static service discovery. The devices available in
the environment are manually pre-stored in the service
discovery database. The WebSplitter proxy queries the
SDDB to learn about available devices. The proxy registers
itself with service discovery. The users that want to
establish a session or join an on-going session access the
service discovery home page, request the list of available
devices and select the WebSplitter service, which redirects
the user to the WebSplitter home page. In the future, we
plan to add dynamicity to our service discovery so that
devices can be discovered or removed from the service
discovery database as they come and go.

To appear in ACM Conference on Computer Supported Cooperative Work (CSCW) 2000

 10

6. SUMMARY
WebSplitter enables multi-device multi-user Web browsing
via a unified XML framework. The WebSplitter proxy
splits XML content to multiple users, constructing
personalized partial views based on users’ access
privileges, as defined in an XML metadata policy file. The
partial view is further split into components that are sent to
the individual devices accessible to that user. The same
mechanism for mapping of permitted XML tags to users is
reapplied to map XML tags to output devices. The
feasibility of this approach was demonstrated.

7. REFERENCES
[Bluetooth] Bluetooth Serv. Disc., http://www.bluetooth.com
/developer/specification/specification.asp
[Brown96] M. Brown, M. Najork, “Collaborative Active
Textbooks: a Web-Based Algorithm Animation System for an
Electronic Classroom,” IEEE Symposium on Visual Languages,
1996, pp. 266-275.

[Fox98] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, “Adapting
to Network and Client Variation Using Infrastructural Proxies:
Lessons and Perspectives” , IEEE Personal Communications, vol.
5, no. 4, Aug. 1998, pp. 10-19.
[Han98] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret,
J. Rubas, “Dynamic Adaptation In an Image Transcoding Proxy
For Mobile Web Browsing,” IEEE Personal Communications,
vol. 5, no. 6, Dec. 1998, pp. 8-17.
[Hodes99a] T. Hodes, M. Newman, S. McCanne, R. Katz, J.
Landay, “Shared Remote Control of a Video Conferencing
Application: Motivation, Design, and Implementation,” SPIE
Multimedia Computing and Networking (MMCN), Proc. SPIE,
vol. 3654, 1998 (conf. held Jan 1999), pp. 17-28.
[Hodes99b] T. Hodes, R.Katz, “A Document-based Framework
for Internet Application Control,” 2nd USENIX Symposium on
internet Technologies and Systems (USITS), 1999, pp. 59-70.
[HTMLviewercontrol] http://msdn.microsoft.com/isapi/
msdnlib.idc?theURL=/library/wcedoc/wcehpc/jup_prog_29.htm
[IWork] Interactive Workspaces http://graphics.stanford.edu/
projects/iwork/
[Microsoft] Microsoft NetMeeting, http://www.microsoft.com/
catalog/display.asp ?site=113&subid=22&pg=1
[Myers98] B. Myers, H. Stiel, and R. Gargiulo. "Collaboration
Using Multiple PDAs Connected to a PC." Proceedings
CSCW'98: ACM Conference on Computer-Supported
Cooperative Work, November 14-18, 1998, Seattle, WA. pp. 285-
294. See also http://www.cs.cmu.edu/~pebbles/
[Netscape] Netscape Conference, http://www.aibn.com/help/
Software/Netscape/Communicator/Conference/ browsing.HTML
[Reala] Real Presenter, http://www.realnetworks.com/products/
presenterplus/info.HTML
[Rekimoto98] J. Rekimoto, “A Multiple Device Approach for
Supporting Whiteboard-based Interactions,” Human Factors in
Computing Systems (CHI) 1998, pp.344-351.
[Robertson96] S. Roobertson, C. Wharton, C. Ashworth, M.
Franzke, “Dual Device User Interface Design: PDA’s and
Interactive Television,” SIG CHI 1996, pp. 79-86.
[Salutation] http://www.salutation.org/
[Stotts97] D. Stotts, J. Prins, L. Nyland, T. Fan, “CobWeb:
Tailorable, Analyzable Rules for Collaborative Web Use,”
http://www.cs.unc.edu/~stotts/cobWeb/doc/index.HTML
[UPNP] http://www.upnp.org/
[Veizades97] J. Veizades, E. Guttman, C. Perkins, S. Kaplan,
“Service Location Protocol Internet Draft #17,” draft-ietf-svrloc-
protocol-17.txt, IETF, 1997.
[W3C] http://www.w3.org/TR/annot/
[Waldo99] J. Waldo, “The Jini Architecture for Network-centric
Computing,” Communications of the ACM, July 1999, pp. 76-82.
[Want95] Want, R. Schilit, B.N. Adams, N.I. Gold, R. Petersen,
K. Goldberg, D. Ellis, J.R. Weiser, M., “An overview of the
PARCTAB ubiquitous computing experiment,” IEEE Personal
Communications, vol.2, no.6, Dec. 1995, pp. 28-43.
[WAP] http://www.wapforum.org/
[WebEx] http://www.Webex.com
[XML] http://www.w3.org/XML/
[Yokota99] Y. Yokota, T. Nakamura, H. Tarumi, Y. Kambayashi,
“Multiple Dynamic View Support for Cooperative Work,” Proc.
6th IEEE International Conference on Database Systems for
Advanced Applications, 1999, pp. 331-338.

Figure 8: Screen captures of WebSplitter in action. The XML
Web page of Figure 2 has been split by our proxy into different
partial views on the WinCE screen (top, only the private text
notes plus navigations buttons appear, slide is filtered out), and
on a standard browser (bottom, only the graphical slide appears,
not text or buttons).

