An Efficient Multicast Protocol for Content-Based
Publish-Subscribe Systems

Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman
IBM T. J. Watson Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532
Contact: banavar@watson.ibm.com

issue. In the past decade, systems supporting this paradigm

Abstract. The publish/subscribe (or pub/sub) paradigm is ahave matured significantly resulting in several academic
simple and easy to use model for interconnectingaind industrial strength solutions [4][10][12][13][15]. A
applications in a distributed environment. Many existingsimilar approach has been adopted by ®BIG for
pub/sub systems are based on pre-defined subjects, a@@®RBAevent channels [11].
hence are able to exploit multicast technologies to provide An emerging alternative to subject-based systems is
scalability and availability. An emerging alternative to content-based subscription systems [6][14]. These systems
subject-based systems, known as content-based systemgport a number ahformation spaceseach associated
allow information consumers to request events based omith an event schemalefining the type of information
the content of published messages. This model ntained in each event. Our stock trade example (shown
considerably more flexible than subject-based pub/subin Figure 1) may be defined as a single information space
however it was previously not known how to efficientlywith an event schema defined as the tu&ie: string,
multicast published messages to interested content-baserice: dollar, volume: integer]. A content-based subscription is
subscribers within a network of broker (or router) a predicate against the event schema of an information
machines. This shortcoming limits the applicability ofspace, such gissue="IBM” & price < 120 & volume > 1000) in
content-based pub/sub in large or geographicallyour example.
distributed settings. In this paper, we develop and evaluate With content-based pub/sub, subscribers have the added
a novel and efficient technique for multicasting within aflexibility of choosing filtering criteria along as many
network of brokers in a content-based subscription systemdjmensions as event attributes, without requiring
thereby showing that content-based pub/sub can bgre-definition of subjects. In our stock trading example,
deployed in large or geographically distributed settings. the subject-based subscriber is forced to select trades by
issue name. In contrast, the content-based subscriber is
free to use an orthogonal criterion, such as volume, or

The publish/subscrib@aradigm is a simple, easy to useindeed a collection of criteria, such as issue, price and
and efficient to implement paradigm for interconnectingvolume. Furthermore, content-based pub/sub removes the
applications in a distributed environment. Pub/sub base@dministrative overhead of defining and maintaining a
middleware is currently being applied for applicationlarge number of groups, thereby making the system easier
integration in many domains including financial, proces§0 manage. Finally, content-based pub/sub is more general
automation, transportation, and mergers and acquisition#! that it can be used to implement subject-based pub/sub,
Pub/sub Systems contain information providers, thVhI'e the reverse is not true. While content-based pUb/SUb
publish events to the system, and information consumerds the more powerful paradigm, efficient and scalable
who subscribe to particular categories of events within thénplementations of such systems have previously not been
system. The system ensures the timely delivery ofleveloped.
published events to all interested subscribers. A pub/sub In order to efficiently implement a content-based
system also typically containsessage brokershat are pub/sub system, two key problems must be solved:
responsible for routing messages between publishers and The problem offficiently matchingan event against
subscribers. a large number of subscribers on a single message

The earliest pub/sub systems wesebject-based In broker.
these systems, each unit of information (which we will call * The problem of efficientlynulticastingevents within
aneveny is classified as belonging to one of a fixed set of @ network of message brokers. This problem becomes
subjects (also known as groups, channels, or topics). crucial in two settings: 1) when the pub/sub system is
Publishers are required to label each event with a subject; geographically distributed and message brokers are
consumers subscribe to all the events within a particular ~ connected via a relatively low speed WAN (compared
subject. For example a subject-based pub/sub system for to high-speed LANs), and 2) when the pub/sub system
stock trading may define a group for each stock issue; has to scale to support a large number of publishers,
publishers may post information to the appropriate group, ~ subscribers and events. In both cases it becomes
and subscribers may subscribe to information regarding any ~ crucial to limit the distribution of a published event to

1 Introduction

1

network of brokers to determine which brokers to send the

Publishers message. Further, each broker forwards messages to its
o subscribers based on their subscriptions. The
O disadvantages of the match-first approach are avoided since

no additional information is appended to the message
headers. Further, at most one copy of a message is sent on
each link. The disadvantages of the flooding approach are
avoided as the message is only sent to brokers and clients
issue=IBM & needing the message, thus exploiting locality. We
price<120 & illustrate, using a network simulator, that flooding
volume>1000 L .

overloads the network at significantly lower publish rates
than link matching. We also describe our implementation
of a distributed Java based prototype of content-based
pub/sub brokers.

The remainder of this paper is organized as follows. In
section 2, we present a solution to the matching problem
(i.e., the case when the network consists of a single broker).

only those brokers that have subscribers interested im section 3, we discuss how to extend the solution to the
that event. matching problem into a solution to the content-based

One of the strengths of subject-based pub/sub systemsrizuting problem in a multi-broker network. In section 4, we
that both problems are trivial to solve: the matchingevaluate the performance of this approach and compare it
problem is solved using a mere table lookup; the multicagb the flooding approach.
problem is solved by defining a multicast group per subject . .
and multicasting each event to the appropriate multicag The Matching Algorithm

group. For content-based pub/sub systems, however, Thjs section summarizes a non-distributed algorithm
previous literature does not contain solutions to eithefy, matching an event against a set of subscriptions, and
problem, matching or multicasting. In this paper Weyetyrning the subset of subscriptions that are satisfied by
present the first efficient solution to the multicast problempe event. (A more detailed presentation of matching along
for content-based pub/sub. In a companion paper [2] Wgith experimental and analytic measures of performance
present an efficient solution to the matching problem foiy e the subject of our companion paper [2].) This matching
these systems. algorithm is the basis of our distributed multicast protocol,

There are two straightforward approaches to solving thSresented in the following section.
multicasting problem for content-based systems: (1) in the oy approach to matching is based on sorting and
match-firstapproach, the event is first matched against alhrganizing the subscriptions into a parallel search tree (or
subscriptions, thus generating a destination list and thpST) data structure, in which each subscription
event is then routed to all entries on this list; and (2) in th@orresponds to a path from the root to a leaf. The matching
flooding approach, the message is broadcast or flooded Bperation is performed by following all those paths from
all destinations using standard multicast technology anghe root to the leaves that are satisfied by the event.
unwanted messages are filtered out at these destinationgtuitively, this data structure yields a scaleable algorithm
The match-first approach works well in small systems, bupecause it exploits the commonality between subscriptions
in a large system with thousands of potential destinationgg shared prefixes of paths from root to leaf.
the increase in message size makes the approach rigyre 2 shows an example of a matching tree for an
impractical. ~ Further, with this approach we may havesyent schema consisting of five attribusthrough as.
multiple copies of the same message going over the samMese attributes could represent, for example, the stock
network link on its way to multiple remote subscribers.isgye, price, or volume attributes mentiondmve@. The
The flooding approach suffers when, in a large system, onbyot of the tree corresponds to a test of the value of attribute
a small percentage of clients want any single messagg; the nodes at the next level correspond to a test of
Furthermore, the flooding technique cannot expbmality attributeay, etc. The branches are labeled with the values of
of information requests, i.e., when clients in a singlgne attributes being tested. In the example, we only show
geographic area are, for many applications, likely to havgquality tests (although range tests are also possible), so the
similar requests for data. right branch of the root represents the test 1. The left

The central contribution of this paper is a new protocohranch of the root, with label *, means that the
for content-based routingan efficient solution to the gypscriptions along that branch do not care about the value
multicast problem for content-based pub/sub systems. Withf the attribute. Each leaf is labeled with the identifiers of
this protocol, calledink matching each broker partially 5| the subscribers wishing teceive eventsnatching the
matches events against subscribers at each hop in thgagicate, i.e., all the tests from the root to the leaf. For

2

Information space
[issue, price, volume]

Subscribers

Figure 1: Pub/Sub Info rmation Space

example, in Figure 2, the rightmost leaf corresponds to a those for which the subscriptions rarely contain

subscription whose predicate(és=1 & a,=2 & a;=3 & as=3). “don't care” tests --- are selected as indices. A
Since as does not appear in this subscription, it is separate subtree is built for each possible value (or
represented by a label * the PST. for ranges, each distinguished value range) of the
Given this tree representation of subscriptions, the index attributes.

matching algorithm preeds as follows. We begin at the 2. Trivial Test Elimination: Nodes with a single child
root, with current attributey. At any non-leaf node in the which is reached by a *-branch may be eliminated.
tree, we find the value of the current attribute. We then 3. Delayed Branching: Following *-branches may be
traverse any of the following edges that apply: (1) the edge delayed until after a set of tests have been applied.
labeledy; if there is one, and (2) the edge labeled * if there This optimization prunes paths from that *-branch

is one. This may lead to either 0, 1, or 2 successor nodes which are inconsistent with the tests.
(or more in the general case where the tests are not all strict It is worth noting that, under certain circumstances,
equalities). We initiate parallel subsearches at eachfter applying optimizations, the parallel search tree will no
successor node. When any of the parallel subsearchiemger be a tree but instead a directed acyclic graph.
reaches a leaf, all subscriptions at that leaf are added to the . . .
list of matched subscriptions. For example, running the°’ The Link Matching Algorithm
matching algorithm with the matching tree of Figure 2 and The previous section described a non-distributed
the evena = <1, 2, 3, 1, 2> will visit all the nodes marked gjgorithm for matching events to subscriptions. This
with dark circles and will match four subscription section presents the central contribution of this paper -- an
predicates, corresponding to the dark circles at leaf nodes extended matching algorithm for a network dfrokers,
The way in which attributes are ordered from root toyyplishers, and subscribers (as shown in Figure 3). The
leaf in the PST can be arbitrary. In our experienceprgplem, in this case, is to efficiently deliver an event from
however, performance seems to be better if the attributgs pyblisher to all distributed subscribers interested in the
near the root are chosen to have the fewest number gfent.
subscriptions labeled with a *. _ One straightforward solution to this problem is to
In the companion paper [2], we have analytically showryerform the matching algorithm of the previous section at
that the cost of matching using théose algorithm the proker nearest to the publisher, producing a destination
increasedessthan linearly as the number of subscriptionsjist consisting of the matched subscribers. This destination
Increase. list may be undesirably long in a large network with
thousands of subscribers, and it may be infeasible to
transmit and process large messages containing long
A number of optimizations may be applied to thedestination lists throughout the network.
parallel search tree to decrease matching time -- these Link matching is our strategy for multicasting events
optimizations are explained fully in [2]. without using destination lists. Aftereceiving an event,
1. Factoring: Some search steps can be avoided, at theach broker receiving an event performs just enough
cost of increased space, by factoring out certainmatching steps to determine which of risighborsshould
attributes. That is, certain attributes --- preferablyreceive it. As shown in Figure 3, neighbors may be brokers

2.1 Optimizations

* 1 ai
x 2 5 1 2 az
o
* 3 & */ b\ 3 2 3 as
& &b &
1 1 2 |1 2 1 1 2 1 * aAg
P b D & b

4 * 3 2 1 2 |3 * 1 2 3 ds

> b S b > b & &

Figure 2: Matching Tree

3

or clients (this figure shows a spanning tree derived fron
the actual non-tree broker network). That is, each broke
rather than determining which subset ofsalbscribers is to
receive the event, instead computes which subset of if
neighbors is to receive the event, i.e., it determines thog N ®)
links along which it should transmit the message.
Intuitively, this approach should be more efficient becausq
the number of links out of a brokées typically much less
thanthe total number of subscribers in the system
To perform link matching, we use the parallel search
tree (PST) structure of the previous section, where ead g \b
path from root to leaf represents a subscription. W4
augment the PST with vectors toits, where the value of @ Broker
each trit is either “Yes,” (Y) “No,” (N) or “Maybe” (M). O Client
We begin byannotatingleaf nodes in the PST with a trit
vector of size equal to the number of links out of thaf]
broker. For each link out of a broker, a position in a trit
vector determines whether to send matched events dowearlier, the trit is Yes when a search reaching that node is
that link, based on whether there exists a subscriptioguaranteed to match a subscriber reachable through that
reachable via that link. Leaf annotations are thedink, No when a search reaching that node will have no
propagated to non-leaf nodes in a bottom-up manner. Subsearch leading to a subscriber reachable through that
“Yes” in a trit annotation means that (based on the testink, and Maybeotherwise.
performed so far) the event will be matched by some Annotation is a recursive process starting with the
subscriber that is best reached by sending the messagaves of the parallel search tree, which represent the
along the given link; “No” means that the event will subscriptions. We label each leaf node trit in link position
definitely not be matched by any subscriber along that linkyith Y if one of that leaf node’s subscribers is located at a
and “Maybe” means that further searching must take placdestination reached through limkand N otherwise. After
to determine whether or not there is such a subscribeall the leaves have been annotated, we propagate the
Annotations are described in more detail below. annotations back toward the root of the PST using two
The link matching algorithm consists of the following operators:Alternative Combine and Parallel Combine.
three steps. First, at each broker, the parallel search treefigernative combine is used to combine the annotations
annotated with a trit vector encoding link routing from non-* child nodes; Parallel Combine is used to merge
information for the subscriptions in the broker network.the results of the alternative combine operations with the
Second, arnnitialization maskof trits must be computed at annotation of a child reached by a *-branch.
each broker for each spanning tree used for message The operators are shown in Figure 4. Intuitively,
routing. (Collectively, the masks for a single spanning tredlternative Combine takes the least specific result of two
across all the brokers encode the spanning tree in thanotations. That is, Maybes dominate Yes or No results.
network.) Third, at match time the initialization mask for aParallel Combine takes the most liberal result of two
given spanning tree (based on the publisher) is refined untiinnotations. That is, Yes dominates Maybe; Maybe
the broker can determine whether or not to send a messag@minates No.
on each link, that is, until all values in the mask are either To compute a node’s annotation, Alternative Combine
Yes or No. These three steps are described in detail in tiie applied to all children of the node including the one
following threesubsections respectively. reached through a *-branch. If no *-branch exists, one is
. included to represent values for which no value branch
3.1 Annotating the PST exists, and an annotation of all No values is added. Parallel
Each broker in the network has a copy of all theCombine is then applied to this result and the *-branch.
subscriptions, organized into a PST as discussed in the An example is shown in Figure S.
previous section, ar_wd illustrated in Figgre 2. Note that _th%.z Computing the Initialization Mask
approach we describe here for computing tree annotations
is limited to trees with only equality tests addn’t care We assume that each broker knows the topology of the
branches. A more general solution requires the use oftaoker network as well as the best paths between each
parallel search graptand is not described here to conservebrokerand each destination. To simplify the discussion, we
space. ignore alternative routes for load balancing or recovery
Each broker annotates each node of the PST wiith a from failure and congestion. Instead, we assume that
vector annotationThis annotation vector contaimstrits, events always follow the shortest path. From this topology
one per outgoing link from the broker. As mentionedinformation, each brokerconstructs arouting table

4

Figure 3: Broker Network

Alternative Yes | Maybe No Parallel Yes Maybe No
Yes Y M M Yes Y Y Y
Maybe M M M Maybe Y M M
No M M N No Y M N
Figure 4: Alternative Combine and Parallel Combine
mapping each possible destinatido the link which is the current mask for which a Yes trit exists in the
next hop along the best path to the destination.
We also assume that the broker knows the set (¢ YYM
spanning trees, only one of which will ever be used by ead
publisher. In the case where the broker network is acycli
(Figure 3), computation of the spanning tree is 2
straightforward. If the broker topology is not a tree, then * 1
computing the spanning tree is more complex. Howevel
even in this case, there will be a relatively small set o
different spanning trees. At worst, there will be one
spanning tree for each broker that has publisher neighbo YYN MYY NYN
and in most practical cases, where the broker network MYY@\IYN - MYM
“tree-like”, there will be significantly fewer spanning trees.
Using these best paths and spanning trees, each brol MYI\/@YYN =YYM
computes th.ejoyvnst.reamdestlnat|ons for each spanning @ Alternative Combine
tree. A destination is downstream from a broker when it i
a descendant of the broker on the spanning tree. Bas (P Parallel Combine
upon the above analysis, each broker agsegeach unique Figure 5: Computing Annotations
spanning tree with amitialization mask one trit per link.
The trit at linkl has the value Maybe if at least one of the subsearch mask, are converted to Yes trits. Afler
destinations routable viais a descendant of the broker in the children have been searched, the remaining
the spanning tree; and No if none of the destinations Mmaybe trits in the current mask are made No trits.
routable via | are descendants of the brokerThe The current mask is returned.

significance of the mask is that an event arriving at & 4. The top-level search terminates and sends a copy of
broker should only be propagated along those links leading the event to all links corresponding to Yes trits in the
to descendant destinations -- that is, those links whose returned mask.

mask bit is M and will eventually be refined to a Y via This concludes the description of the link matching

matching, described below. algorithm.
3.3 Matching Events 4 Implementation and Performance

When an event originating at a publisherdseaived at We have implemented the matching algorithms
a broker the following steps are taken using the annotategiescribed above and tested them on a Isited network
search tree: topology as well as on a real LAN, as explained in the

1. A mask is created and initialized to the initia“zationfonowing two subsections respective|y_
mask associated with the publisher’s spanning tree.

2. Starting with the root node, the maskefinedusing 4.1 Simulation Results
the trit vector annotation at the current node. During
refinement, any M in the mask is replaced by thel
corresponding trit vector annotation. If the mask is;.
now fully refined --- that is, it has no M trits --- then
the search terminates, returning the refined mas
Otherwise, step 3 is executed.

3. The designated test is performed and, 0, 1, or
children are found for continuing the search a
mentioned in Section 2. A subsearch is executed
each such child using a copy of the current mask. On
the return of each subsearch, all Maybe trits in the

The goals of our simulations were twofold:
To measure the network loading characteristics of the
link matching protocol and compare it to that of the
flooding protocol.
. To measure the processing time taken by the link
?atching algorithm at individual broker nodes and
ompare it to that of centralized matching (i.e., the non-trit
1Patching algorithm described in Section 2).

! In some cases, where some destinations reachable through a link downstream on some spanning trees and are not oraothers, the se
may be optimized by splitting the link into two or more “virtual” links.

5

Simulation Setup In the simulation, time is measured in “ticks” of a
The simulated broker network topology is shown invirtual clock, with each tick corresponding to about 12
Figure 6. The topology has 39 brokers and 10 subscribingicroseconds. The virtual clock, used only for simulation
clients per broker, each client with potentially multiple purposes, is implemented as synchronized brokers’ clocks.
subscriptions. In addition, there is an unspecified numbeEach event carries with it its “current” virtual time from
of publishing clients -- three of these publishers, shown ahe beginning of the simulation. An event spends time
P1, P2, and P3 in the figure, publish events that are trackédversing a link (“hop delay”), waiting at an incoming
by the simulator and the rest simply load the brokers bigroker queue, getting matched, and being sent (software
publishing messages that take up CPU time at the brokerslatency of the communication stack).
As shown in Figure 6, the 39 brokers form three trees q{l :
etwork Loading Results
13 brokers each. The root of each of these three trees are : . L .
As mentioned earlier, the purpose of this simulation run
connected to the roots of the other two. Also, as shown : ; . .
as to determine, for the link matching and the flooding

there are a small number of lateral links between non—roc‘>’¥ .)
) : rotocols, the event publish rate at which the broker
nodes in the trees to allow messages from some pubhshé)rs

to follow a different path than other publishers. ThisnetwOrk becomes - “overloaded” (or congested), for a

o . varying number of subscriptions. A broker is overloaded
topology is intended to model a real-world V\llde_areawhen its input message queue is growing at a rate higher
network with each of the three rooted trees distributed fatr P 9 q 9 9 9

from each other (intercontinental), but the brokers within ahan the broker processor can handie.

. This simulation run was performed with the following

tree closer to each other (interstate). The top-level brokers . ,
arameters. The event schema has 10 attributes (with 2
are modeled to have a one-way hop delay of about 65 ms, . .)
j . X . attributes used for factoring), and each attribute has 5
links from them to their next level neighbors is 25ms, the o i
. ; values. The subscriptions are generated randomly in such a
third level hop delay is about 10ms, and the hop delay to X . : . -
clients is 1ms way that the first attribute is non-* with probability 0.98,

and this probability decreases at the rate of 85% as we go

The broker network simulates an information SpaC(?rfom the first to the last attribute. This means that

with several control parameters, such as the number Q L .
. . Subscriptions are very selective -- on average, each event
attributes in the event schema, the number of values pér o
. : : matches only about 0.1% of subscriptions. The number of
attribute and the number of factoring levels (i.e., the . .
events published is 500.

preferred attributes of Section 2.1). Subscriptions are The results from the simulation run are shown in Chart

generated randomly, but one of the control parameters ? The chart shows that a broker network running the

the probability that each attribute is a * (i.e., don't care) loodin rotocol saturates at significantly lower event
For non-* attributes, the values are generated according Io 9p g y

a zipf distribution. In addition, we simulate “locality of publish rates than the link matching protocol for any

interest” in subscriptions by having subscribers within eacrr]]umber of subscriptions. In particular, when each event is

subtree of the broker topology have similar distributions Ofiest|ngd to onIy.a small percentage O.f all clients, link
; " matching dramatically outperforms flooding. In the case
interested values whereas subscriptions across from th 7 . . .)

. L where events are distributed quite widely, the difference is
other two subtrees have different distributions.

. . not as great, since most links are used to distribute events
Events are also generated randomly, with attribute - : . .

. . A . in the link matching protocol. This result illustrates that
values in a zipf distribution. Events arrive at the

publishing brokers according to a Poisson distribution. Thgnk .matchmg_ IS vyell—swted to the type of selective
. . C Mmulticast that is typical of pub/sub systems deployed on a
mean arrival rate of published events, which is a ke}(NAN

parameter, is controlled by a user specified parameter.

intercontinent

//// ~ \
interstat P3 /

ANSALNAL

P1 P2
Figure 6: Simulated broker network topology

6

g 1200 250 —
£] \ .) Chart 2: Matching time
9 1000 Flooding gq 200 & —
]] \ X Link Matchig 8
- %]
g 800 5 150
S’ —
P 1 \ £ 100
8 600 . I
<] z 5
= 400 o
g- .
- 200 2000 4000 .60.00 8000 10000
g Chart 1: Saturation points Subscriptions
w o
0 soloo |0(I)00 |5(I)00 20000 B (M1hop A LM3hops V¥V LM5hops * Centralized
Number of subscriptions © LM 2hops A LM 4 hops < LM 6 hops
Matching Time Results significant, and (3) for really large numbers of subscribers

As mentioned earlier, the purpose of this simulation rurj.e., much beyond 10000), the slopes of the lines in Chart
was to measure the cumulative processing time taken by tixeindicate that centralized matching may take more steps
link matching algorithm and the centralized (non-trit)than link matching.
matching algorithm. The processing time taken per event
in the link matching algorithm is the sum of the times for4-2 System Prototype

all the partial matches at intermediate brokers along the We have implemented the matching algorithms in a

way fr_om .pubhs_her to subscriber. . . network of broker nodes where brokers are connected using
This simulation run was performed with the foIIowmg a_specified topology. A broker network may implement
pargmeters. The event s_chema has 10 attrlputes (with rﬁultiple information spaces by specifying an event schema
attributes used for factoring), and each attribute has E}bne per information space) defining the type of
values. The St_Jbscrlpt_lons are genfrat.ed randorr_ll_ym Suchri'j‘formation contained in each event. Clients subscribe to
Waé’ t;‘,‘"‘t thebf'[:)s,lt, at(t;jnbute IS non—h with prc;bab;llty 0.98, an information space by first connecting to a broker node,
and this probability decreases at the rate of 82% as we YRen providing subscription information which includes a

from the.ﬁrst to the last attripute. Again, this means thabredicate expression of event attributes. This section
subscriptions are very selective -- on average, each eve Lscribes the implementation of such a broker node.
matches only about 1.3% of subscriptions. The number o As illustrated in Figure 7, each broker node consists of

even:]s puinThefd is 13100'_ lati h in Ch a matching engine, client and broker protocols, a
The rr?Slf,tSk rom th_e sm|1u a.t|gn run allre S ?Wn th ‘:’}r&onnection manager and a transport layer. The matching
2. For the link matching algorithm, six lines, "LM 1 hop engine which implements one of the matching algorithms

through “LM 6 hops”, are shown -- these corrgspond to thaescribed earlier, consists of a subscription manager, and
number of hops an event had to traverse on its way from event parser. A subscription manager receives a

publishing broker to a subscriber. On the Y axis, the Chagubscription from a client, parses the subscription

shows the numbgr of “m.atchlng. _ste_ps" perfqrmed orlaxpression, and adds the subscription to the matching tree.
average. A matchlng step is the visitation _of a single npdﬁn event parser first parses a received event, then
in the matchlng_tree. Alt_hough our current 'mplem?ntat'orhn—marshals it according to the pre-defined event schema.
has traded off time efficiency in favor of space efﬁmency,-l-he matchine engine then uses the implemented matching

we estimate th‘,"‘t a tm_1e efficient |mplemenltat|on Car‘algorithm to get a list of subscibers interested in the
execute a matching step in the order of a few m'crosecondﬁn-marshaled event

The chart shows that the cumulative matching steps for The broker to client protocol is implemented by the

up to four hops using the link matching algorithm is N0l jient protocol object, whereas the broker to broker protocol

more than the number of maiching steps taken by thlps implemented using the broker protocol object. These

centrﬁyzed Ialgqrrllthm. kFor more thanh.four hops tr?e I'mﬁ)rotocol objects are robust enough to handle transient
matching algorithm takes more matching Steps, NOWeVEL; a5 of connections by maintaining an event log per

the IinI§ matching protocol is still a better choice over theclient. Once a client re-connects after a failure, the client
](‘:enlt.ralllzed a:]gorlthr? l:r)]ecau;e (12 the ix‘:ra pr(r)]cessmg tITT}:Sarotocol object delivers the events received while the client
for Tin .matc ing (of the order of much less than 1ms) '?/vas dis-connected. A garbage collector periodically cleans
insignificant compared to network latency (of the order Ofip the log. The connection manager object maintains the

tens of ms),_(2) the gai_n in 'ate”CY to. feg,‘ona' pUb“She,rﬁonnections to clients and the other brokers in the network.
and subscribers obtained by distributing brokers is

r \ Chart 3: Performance of Matching
Matching Engine

w5
£
Event Subscription ° 4 B
Parser Manager E /
23
Client Broker = /
Protocol Protocol g5
€ /
Connection Manager % 1
2
< 0
k Transport J 0 5 10 15 20 25 30
Number of subscriptions

Figure 7: Broker Components Thousands

The transport layer sends and receives messages to asgnt distribution. Flooding is a good approximation of the
from clients and other brokers in the network. To improvebroadcast approach since most WAN multicast techniques
scalability, it implements an asynchronous “send’require the use of a series of routers or bridges connecting
operation by maintaining a set of outgoing queues, one peAN links. IP multicast [5][1] allows subscriptions to a
connection. A broker thread sends a message Wubrange of possible IP addresses known as class D
en-queueing it in the appropriate queue. A pool of sendingddresses. Subscriptions to these groups is propagated back
threads is responsible for monitoring these queueues f@firough the network routers implementing IP. Pragmatic
outgoing messages, and sending them to destinations usi@gneral Multicast [16] has been proposed as an
the underlying network protocol. internet-wide multicast protocol with a higher level of

Currently, broker nodes are implemented in Java usingervice. This protocol is an extension of IP multicast that
TCP/IP as the network protocol. In an experimental setuprovides “TCP-like” reliability, and therefore is also reliant
where a 200 MHz pentium pro PC is used as a broker nodgn multicast-enabled routers. A mechanism for multicast in
and low end PCs (using 133 MHz pentium processors) aeg network of bridge-connected LANs is proposed in [7]. In
used as clients connected using a 16MB token ringhis approach, members of a group periodically broadcast to
network, the current implementation of the broker caman all-bridge group their membership in a multicast group.
deliver upto 14,000 events/sec. Also, as shown in Chart Bridges note these messages and update entries in a
for the pure matching algorithm, brokers can performmulticast table, including an expiration time.
matching very quickly, at the rate of about 4ms for 25,000 The content-based subscription systems that have been
subscribers. In fact, our matching algorithms are seleveloped do not yet address wide-area, scaleable event
efficient that the transport system and network costs of gistribution, i.e. although they arecontent-based
broker outweigh the cost of matching at a broker. subscription systems, they are nabntent-based routing

systems. SIENA allows content-based subscriptions to a
5 Related Work distributed network of event servers (brokers) [6]. SIENA

As mentioned earlier, alternatives to the link matchindfilters events before forwarding them on to servers or
approach were either to (1) first compute a destination ligtlients. However, a scaleable matching algorithm for use at
for events by matching at or near the publisher and the@ach server has not been developed. The Elvin system [14]
distributing the event using the distribution list, or (2) touses an approach similar to that used in SIENA. Publishers
multicast the event to all subscribers which would theréire informed of subscriptions so that they may “quench”
filter the event themselves. events (not generate events) for which there are no

Computing a destination list is a good approach fosubscribers. In [14], plans are discussed for optimizing
small systems involving only a few subscribers. For thesElvin event matching by integrating an algorithm similar to
cases, the matching algorithm presented in section the parallel search tree. This algorithm, presented in [8],
provides a good solution. However, scalability is essentiatonverts subscriptions into a deterministic finite automata
if content-based systems are to fill the same infrastructuer matching. However, no plans for optimizations for
requirements as subject-based publish/subscribe systentoker links (such as our optimization through trit
In cases where destination lists may grow to includ@nnotation) are discussed.
hundreds or thousands of destinations, the match-first Another algorithm for optimizing matching is discussed
approach becomes impractical. in [9]. At analysis time, one of the testg of each

Multicasting an event and then filtering also has itssubscription is chosen as tlgating test; the remaining
disadvantages. Lack of scalability and an inability totests of the subscription (if any) aresidual tests. At
exploit locality was shown for the flooding approach formatching time, each of the attributgsin the event being

8

matched is examined. The event valués used to select 7
those subscriptions whose gating tests includg = v;.

The residual tests of each selected subscription are théH
evaluated: if any residual test fails, the subscription is not

matched; if all residual tests cageed, the subscription is ,
matched. Our parallel search tree performs this type of tes{

for each attribute, not just a single gating test attribute.

One outlet for the work presented in this paper could be
through Active Networks [17]. Active Networks have been[3]
touted as a mechanism for eliminating the strong
dependence of route architectures on Internet standards.
Active Networks allow the dynamic inclusion of code either
at routers or by replacing passive packets with active cod®!
The SwitchWare project [3] follows the former approach
and is most appropriate to the type of router customizaticc)]ﬁ3
proposed in this paper. With SwitchWare, digitally signe
type-checked modules may be loaded into network routergs
Our matching and multicasting component could be one
such module.

6 Conclusions [7]

In this paper, we have presented a new multicast
technique for content-based publish/subscribe systenyg;
known as link matching. Although several
publish/subscribe systems have begun to support
content-based subscription, the novel contribution of linK9]
matching is thatouting is based on a hop-by-hop partial
matching of published events. The link matching approach
allows distribution of events to a large number of
information consumers distributed across a WAN withou
placing an undo load on the network. The approach also
exploits locality of subscriptions.

We evaluate how an implementation of content-basegh 1] Object Management Group.

routing protocol performs by showing that a broker network
stays up while running the link matching algorithm

Bibliography

Lorenzo Aguilar. “Datagram Routing for Internet
Multicasting,” ACM Computer Communications Review,
14(2), 1984. pp. 48-63.

Marcos Aguilera, Rob Strom, Daniel Sturman, Mark Astley,
Tushar Chandra. 1998. Matching Events in a Content-Based
Subscription System. Upcoming IBM Technical Report,
available fromhttp://www.research.iom.com/gryphon.

D. Scott Alexandegt al, “The SwitchWare Active Network
Architecture,” IEEE Network Special Issue on Active and
Controllable Networks,July 1998, Vol. 12, No. 3. pp.
29--36.

K. P. Birman. “The process group approach to reliable
distributed computing,” pages 36-53, Communications of the
ACM, Vol. 36, No. 12, Dec. 1993.

Uyless Black. TCP/IP & Related Protocols, Second Edition.
McGraw-Hill, 1995. pp. 122-126.

Antonio Carzaniga, David S. Rosenblum, and Alexander L.
Wolf. “Design of a Scalable Event Notification Service:
Interface and Architecture,” unpublished. Available from
http://www.cs.colorado.edu/users/carzaniga/siena/index.html
Stephen E. Deering. “Multicast Routing in InterNetworks
and Extended LANs,” ACM Computer Communications
Review, 18(4), 1988 . pp. 55-64.

John Gough and Glenn Smith. “Efficient Recognition of
Events in a Distributed System,” Proceedings of ACSC-18,
Adelaide, Australia, 1995.

Eric N. Hanson, Moez Chaabouni, Chang-Ho Kim, Yu-Wang
Wang. “A predicate Matching Algorithm for Database Rule
Systems,” pages 271-280, SIGMOD 1990, Atlantic City N.
J., May 23-25 1990.

{10] Shivakant Mishra, Larry L. Peterson, and Richard D.

Schlichting. Consul: A Communication Substrate for
Fault-Tolerant Distributed Programs, Dept. of computer
science, The University of Arizona, TR 91-32, Nov. 1991.

CORBA services: Common
Object Service Specification. Technical report, Object

Management Group, July 1998.

whereas brokers get overloaded for the same event arriidR] Brian Oki, Manfred Pfluegl, Alex Siegel, Dale Skeen. “The

rate running the flooding algorithm, since brokers have
larger numbers of events to process in the flooding case.

We also describe a broker implementation that can hand;gg

message loads of up to 14000 events per second on a
MHz Pentium PC. This shows that content-based routing

Information Bus - An Architecture for Extensible Distributed
Systems,” pages 58-68, Operating Systems Review, Vol. 27,
No. 5, Dec. 1993.

David Powell (Guest editor). “Group Communication”,
pages 50-97, Communications of the ACM, Vol. 39, No. 4,
April 1996.

using link matching supports a more general and flexiblgi4] Bill Segall and David Arnold. “Elvin has left the building:

form of publish-subscribe while admitting a highly efficient
implementation.
Future work is concentrating on further validation of

our approach to content-based routing. We are currentlyS] Dale ~ Skeen.

working to deploy our content-based routing brokers on
large private network. This will allow us to conduct syste
tests under actual application loads. Sample applications

A publish/subscribe natification service with quenching,”
Proceedings of AUUG97, Brisbane, Austrailia, September,
1997.

Vitria's Publish-Subscribe Architecture:
Publish-Subscribe Overview, http://www.vitria.com/

16] Tony Speakman, Dino Farinacci, Steven Lin, and Alex

Tweedly. “PGM Reliable Transport Protocol,” IETF Internet
Draft. August 24, 1998.

will include some from the financial trading and Procesg17] p. Tennenhouse, J. Smith, W. D. Sincoskie, D. Wetherall,
control domains. In addition to these system tests, we are G. Minden. “A Survey of Active Network ResearchEEE

also continuing work with our simulator to examine

different types of messaging loads. In particular, since
many publish/subscribe applications exhibit peak activity
periods, we are examining how our protocol performs with
bursty message loads.

Communications Magazindanuary, 1997, Vol. 35, No. 1.
pp. 80--86.

