CSCI 5582 Artificial Intelligence

Lecture 8 Jim Martin

CSCI 5582 Fall 2006

Today 9/26

- Review
- Knowledge-Based Agents
- Break
- · Propositional logic

CSCI 5582 Fall 2006

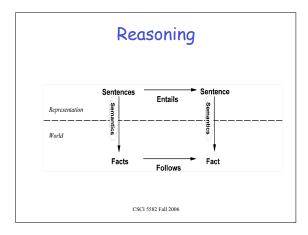
Review

- We studied search because it facilitates the creation of agents that can reason about hypothetical (future) states of the world.
- But... we haven't said much of anything about how those states should be represented.
- Or about how these future (successor) states can be generated from current states

Knowledge-Based Agents

- A knowledge-base is simply a repository of things you know represented in some useful way.
- A knowledge-based agent is one that chooses its actions at least in part on the basis of the contents of its knowledgebase.

CSCI 5582 Fall 2006


Knowledge Representation

- A knowledge representation is a formal scheme that dictates how an agent is going to represent its knowledge.
 - Syntax: Rules that determine the possible strings in the language.
 - Semantics: Rules that determine a mapping from sentences in the representation to some particular state of affairs.

CSCI 5582 Fall 2006

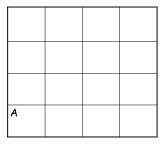
Reasoning

- The knowledge base can't be a simple table.
 - It has to be set up so that an agent can conclude facts about the world that are not already represented in the knowledge base.
 - In other words, it has to reason about unseen worlds

Wumpus World Description

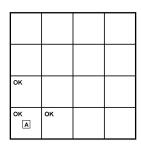
- · Percepts: Breeze, Glitter, Smell
- Actions: Left, Right, Forward, Back, Shoot, Grab, Release
- Goals: Get the gold, get back to the start, (avoiding the Wumpus, and the pits).

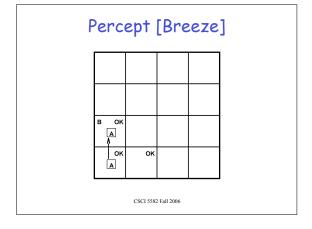
CSCI 5582 Fall 2006

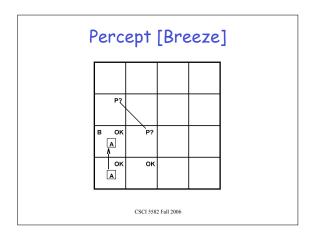

Wumpus World Secret Silvenin Silvenin

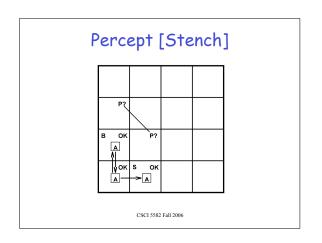
Wumpus World

- Environment
 - One Wumpus
 - One or more pits
 - Squares adjacent to pits have a breeze
 - Squares adjacent to the Wumpus have a stench
 - Glitter is detected only in squares with the $\ensuremath{\mathsf{gold}}$


CSCI 5582 Fall 2006


Start: Percept[None]




CSCI 5582 Fall 2006

Start: Percept [None]

Logic

- · Lots of different logics
- · Some differ primarily in their syntax
- More importantly they differ in how they view the world

CSCI 5582 Fall 2006

Logics

- Propositional logic
- First order logic (predicate calculus)
- Probability theory

Admin/Break

- The quiz...
 - There were three clear categories of folks
 - Those who relied on their recollection of the
 - · Those who read the book (carefully)
 - · Those who did both
 - I'll give back the quiz and the first HW on Thursday

CSCI 5582 Fall 2006

Quiz 2

- · Scheduled for Oct 19.
- Covers chapters ...7,8,9, 13 and 14.

CSCI 5582 Fall 2006

Propositional Logic

- Atomic Propositions
- · That are true or false
- Connectives to form sentences that receive truth conditions based on a compositional semantics

Inference

- · Simple Compositional semantics
- · Modus ponens
- · Resolution
- · Model-Checking

CSCI 5582 Fall 2006

Compositional Semantics

 The semantics of a complex sentence is derived from the semantics of its parts

 $A \vee B$

CSCI 5582 Fall 2006

Compositional Semantics

- Syntactic Manipulations
 - And elimination
 - And introduction
 - Or introduction
 - Double negation removal

	Compositional Semantics
	And introduction You know
•	A

B

· You can add

CSCI 5582 Fall 2006

Modus Ponens

You know

· What can you conclude?

 $A \rightarrow B$

B

CSCI 5582 Fall 2006

Inference

- · Why?
 - Because if A implies B and you know A then you know B
 - · (Wrong)
 - Because the truth table for the -> connective has B being true for all the entries where A->B is true and A is true (right).

Resolution	
· You know	
$A \vee B$	
· What can you $\neg B \lor C$	
$A \lor C$	
$A \lor C$	
CSCI 5582 Fall 2006	
Inference	
 Inference must be a purely formal, syntactic, mechanical, dumb, physical 	
(preferably fast) process	
CSCI 5582 Fall 2006	
Modeling Wumpus World	
Environmental stateNo stench in 1,1	
C	
$\neg S_{1,1}$	

Modeling Wumpus World

- · Long term rules of the world
 - Breezes are found in states adjacent to pits
 - Stenches are found in states adjacent to Wumpi
 - No stench means no Wumpus nearby
- For example...

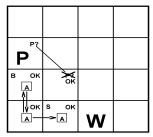
$$\neg S_{1,1} \rightarrow \neg W_{1,1} ^{\prime} \neg W_{2,1} ^{\prime} \neg W_{1,2}$$

CSCI 5582 Fall 2006

Alternative Schemes

• Wumpi cause stenches

Or
$$W_{1,1} \rightarrow S_{1,1} \wedge S_{1,2} \wedge S_{2,1}$$


S1,1 implies W1,1 or W1,2 or W2,1 Causal rule

$$S_{1,1} \rightarrow W_{1,1} \vee W_{1,2} \vee W_{2,1}$$

Diagnostic rule

CSCI 5582 Fall 2006

Inference in Wumpus World

 LOO	. +	at	-	-
 rii				/ I 🦠
		~ 1		

- · Can we represent...
 - The breeze or stench rules with all their implications?
 - A pit, two pits, some pits, no pits?
 - A wumpus...

CSCI 5582 Fall 2006

Next time

• Finish Chapter 7, start on 8