CSCI 5582 Artificial Intelligence

Lecture 7 Jim Martin

CSCI 5582 Fall 2006

Today 9/19

- \cdot Review (and finish) search
- Break

9/19/06

9/19/06

9/19/06

· Game Playing Search

Review

CSCI 5582 Fall 2006

- · Optimization/Local Search
- \cdot Constraint Satisfaction Search

Local Search

• Hillclimbing

9/19/06

9/19/06

9/19/06

- · Random-Restart Hillclimbing
- · Simulated Annealing

Constraint Satisfaction

CSCI 5582 Fall 2006

- · In CSP problems, states are represented as sets of variables, each with values chosen from some domain
- · A goal test consists of satisfying constraints on sets of variable/value combinations
- \cdot A goal state is one that has no constraint violations

CSCI 5582 Fall 2006

Approaches to CSPs

- · As a kind of backtracking search
- · As a kind of iterative improvement

Making Backtracking Work

- \cdot What it means to be a goal (or not) can be decomposed
 - In CSPs a state is a goal state if *all* of the constraints are satisfied.
 - A state fails as a goal state if *any* constraint is violated

CSCI 5582 Fall 2006

- Therefore we can check for violations as variables are assigned values

9/19/06

9/19/06

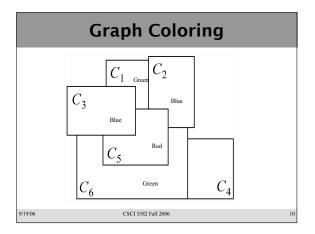
Informed Backtracking CSP Search

- The previous discussion didn't use any notion of heuristic.
- There are two places heuristics can help
 - Which variable to assign next
 - Which value to assign to a variable

CSCI 5582 Fall 2006

Generic CSP Heuristics

· Variables


- Degree heuristic
 - The one involved in the largest number of constraints
- Choose the most constrained variable • The one with the minimum remaining values
- \cdot Values

9/19/06

- Choose the least constraining value

CSCI 5582 Fall 2006

3

Iterative Improvement

- · Sometimes it's better to look at these problems as optimization problems.
- Where you want to optimize (minimize) the number of constraints violated (to zero would be good)

How?

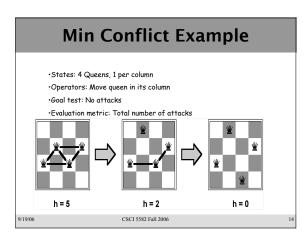
• Randomly assign values to all the variables in the problem (from their domains)

CSCI 5582 Fall 2006

9/19/06

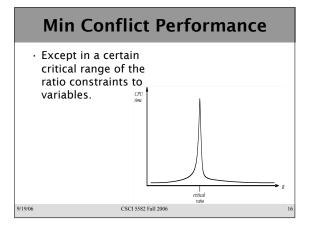
9/19/06

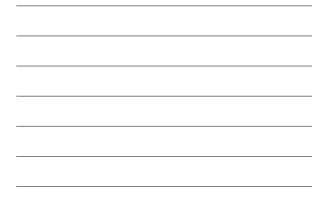
- Iteratively fix the variables (reassign values) that are conflicted.
- · Continue until there are no conflicts or no progress


Min Conflict Heuristic · Randomly choose a variable from the problematic ones. \cdot Reassign its value to be the one that results in the fewest conflicts

· Continue until there are no conflicts

CSCI 5582 Fall 2006


9/19/06


9/19/06

Min Conflict Performance

- · Min Conflict seems to have astounding performance.
- · For example, it's been shown to solve arbitrary size (in the millions)
- N-Queens problems in constant time.
- · This appears to hold for arbitrary CSPs with the caveat...

Preferences and Constraints

- In practice, applications can get fairly messy
 - Sometimes you want the lowest cost zero conflict solution
 - Sometimes constraints are preferences not true constraints
 - Sometimes some constraints are more important than other constraints. That is, the cost of violating some constraints is more than the cost of violating others.

CSCI 5582 Fall 2006

Admin/Break

· Questions?

9/19/06

9/19/06

- Quiz will be on Thursday for the first 30 minutes or so.
 - Focus is on search
 - Chapters 3,4,5 and 6 (today)

Game Playing Search

· Why study games?

9/19/06

9/19/06

9/19/06

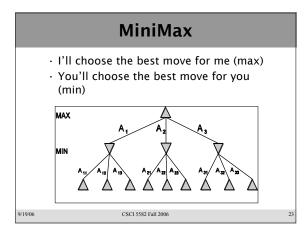
· Why is search a good idea?

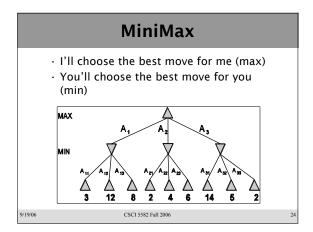
Typical Assumptions

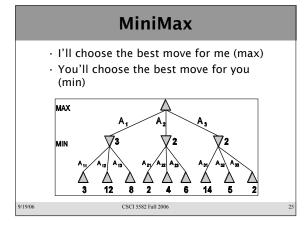
CSCI 5582 Fall 2006

- Some majors assumptions we've been making:
 - Only an agent's actions change the world
 - World is deterministic and accessible

CSCI 5582 Fall 2006

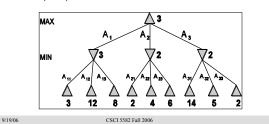

 \cdot Pretty much true in lots of games

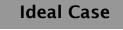

Why Search?


- Ignoring computational complexity, games are a perfect application for a complete search.
- Of course, ignoring complexity is a bad idea, so games are a good place to study resource bounded searches.


21

	MiniMax	
. \	From among the moves available to you, take the best one Where the best one is determined by a search using the MiniMax strategy	
9/19/06	CSCI 5582 Fall 2006	22





- · Search all the way to the leaves (end game positions)
- \cdot Return the leaf (leaves) that leads to a win (for me)

CSCI 5582 Fall 2006

27

· Anything wrong with that?

9/19/06

More Realistic

- Search ahead to a non-leaf (non-goal) state and evaluate it somehow
- \cdot Chess

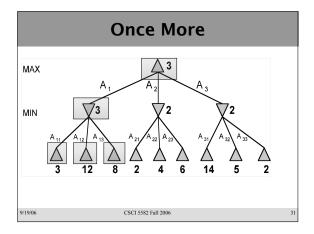
9/19/06

9/19/06

9/19/06

- 4 ply is a novice
- 8 ply is a master
- 12 ply can compete at the highest level
- In no sense can 12 ply be likened to a search of the whole space

CSCI 5582 Fall 2006


Evaluation Functions


- Need a numerical function that assigns a value to a non-goal state
 - Has to capture the notion of a position being good for one player
 - Has to be fast
 - Has to be fast
 - Typically a linear combination of simple metrics

CSCI 5582 Fall 2006

MiniMax Implemented

- · Depth-first, left to right, recursive, depth-limited search
- · Only the leaves are evaluated
- Return values represent the best value found below that point in the tree (not the specific moves taken)

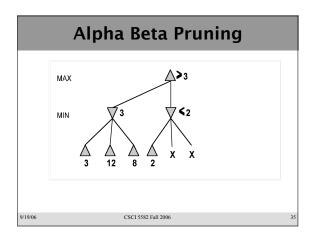
Extensions

 \cdot Pruning

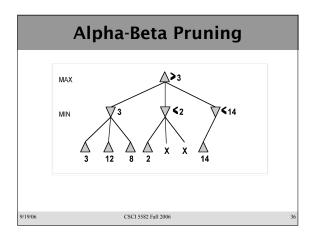
9/19/06

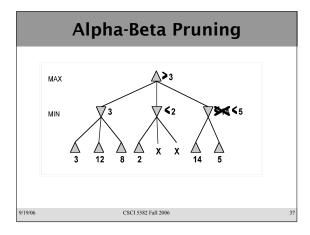
9/19/06

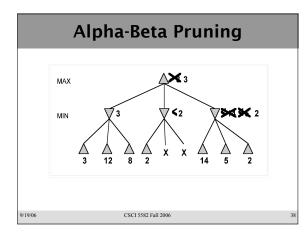
- \cdot Openings and Closings
- \cdot Managing Time

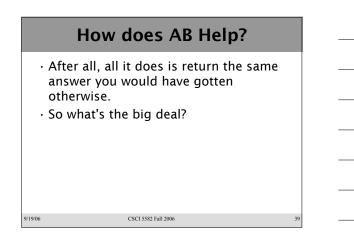

Alpha-Beta Pruning

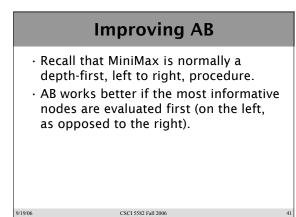
CSCI 5582 Fall 2006

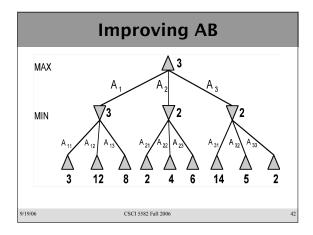

- Often you can ignore entire sections of the search space and come up with the same answer
- Specifically, if you're exploring a line of play that leads to a worse position for you than another one you've already discovered, then don't explore that line anymore.











How does AB Help

- It helps if you can use the time saved to look deeper into the tree.
- \cdot Moving from b^d to $b^{d/2}$ means that that you can go to 8 ply in the same time it took to go to 4
- \cdot Or going from novice to master with the same smarts
- This assumes that you have some way to manage the clock

9/19/06 CSCI 5582 Fall 2006

Dealing with Time

- In tournament play, you have a time constraint.
- Need some effective way to manage the clock.
- I.e. you need to be sure that you have a move to make when the bell goes off.

CSCI 5582 Fall 2006

Iterative Deepening (again)

- · Run MiniMax inside an ID wrapper.
- Remember the best move from previous rounds

9/19/06

9/19/06

9/19/06

- \cdot Keep iterating until some time limit is reached
- Key point: You always have an answer available

CSCI 5582 Fall 2006

Openings and Closings

• Do we really need a search right from the start?

CSCI 5582 Fall 2006

 \cdot Or at the end?

Game Trivia

- · Chinook had closing book with 400 Billion positions
- · Deep Blue examined ~100 Billion boards per move
- \cdot Often reached 14 ply

9/19/06

• Better pruning/move ordering beats faster better hardware

CSCI 5582 Fall 2006

Description
Ouiz (30 min)
Start on Chapter 7