

 1

CSCI 5582 Fall 2006

CSCI 5582
Artificial Intelligence

Lecture 5
Jim Martin

CSCI 5582 Fall 2006

Today 9/12

• Review informed searches
• Start on local, iterative improvement

search

CSCI 5582 Fall 2006

Review

• How is the agenda ordered in the
following searches?
– Uniform Cost
– Best First
– A*
– IDA*

 2

CSCI 5582 Fall 2006

Review: A* search

• Idea: avoid expanding paths that are
already expensive

• Evaluation function f(n) = g(n) + h(n)
• g(n) = cost so far to reach n
• h(n) = estimated cost from n to goal
• f(n) = estimated total cost of path

through n to goal

CSCI 5582 Fall 2006

A* search example

CSCI 5582 Fall 2006

A* search example

 3

CSCI 5582 Fall 2006

A* search example

CSCI 5582 Fall 2006

A* search example

CSCI 5582 Fall 2006

A* search example

 4

CSCI 5582 Fall 2006

A* search example

CSCI 5582 Fall 2006

Remaining Search Types

• Recall we have…
– Backtracking state-space search
– Optimization search
– Constraint satisfaction search

CSCI 5582 Fall 2006

Optimization

• Sometimes referred to as iterative
improvement or local search.

• We’ll talk about three simple but
effective techniques:
– Hillclimbing
– Random Restart Hillclimbing
– Simulated Annealing

 5

CSCI 5582 Fall 2006

Optimization Framework
• Working with 1 state in memory

– No agenda/queue/fringe…
• Usually

• Usually generating new states from this 1
state in an attempt to improve things

• Goal notion is slightly different
– Normally solutions are easy to find
– We can compare solutions and say one is better

than another
– Goal is usually an optimization of some function

of the “solution” (cost).

CSCI 5582 Fall 2006

Numerical Optimization

• We’re not going to consider numerical
optimization approaches…

• The approaches we’re considering
here don’t have well-defined
objective functions that can be used
to do traditional optimization.

• But the techniques used are related

CSCI 5582 Fall 2006

Hill-climbing Search

• Generate nearby successor states to
the current state based on some
knowledge of the problem.

• Pick the best of the bunch and
replace the current state with that
one.

• Loop (until?)

 6

CSCI 5582 Fall 2006

Hill-Climbing Search
function HILL-CLIMBING(problem) return a state that is a local

maximum
input: problem, a problem
local variables: current, a node.

 neighbor, a node.

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor ← a highest valued successor of current
if VALUE [neighbor] ≤ VALUE[current] then return

STATE[current]
current ← neighbor

CSCI 5582 Fall 2006

Hill-climbing

• Implicit in this scheme is the notion
of a neighborhood that in some way
preserves the cost behavior of the
solution space…
– Think about the TSP problem again
– If I have a current tour what would a

neighboring tour look like?
• This is a way of asking for a successor

function.

CSCI 5582 Fall 2006

Hill-climbing Search

• The successor function is where the
intelligence lies in hill-climbing search

• It has to be conservative enough to
preserve significant “good” portions
of the current solution

• And liberal enough to allow the state
space to be preserved without
degenerating into a random walk

 7

CSCI 5582 Fall 2006

Hill-climbing search
• Problem: depending on initial state,

can get stuck in various ways

CSCI 5582 Fall 2006

Break

• Questions?
• Python problems?
• My office hours are now

– Tuesday 2 to 3:30
– Thursday 12:30 to 2

• Go to cua.colorado.edu to view
lectures (Windows and IE only)

CSCI 5582 Fall 2006

Quiz Alert

• The first quiz is on 9/21 (A week
from Thursday)

• It will cover Chapters 3 to 6
– I’ll post a list of sections to pay close

attention to
• I’ll post some past quizzes soon

(remind me by email)

 8

CSCI 5582 Fall 2006

Local Maxima (Minima)

• Hill-climbing is subject to getting
stuck in a variety of local conditions…

• Two solutions
– Random restart hill-climbing
– Simulated annealing

CSCI 5582 Fall 2006

Random Restart Hillclimbing

• Pretty obvious what this is….
– Generate a random start state
– Run hill-climbing and store answer
– Iterate, keeping the current best

answer as you go
– Stopping… when?

• Give me an optimality proof for it.

CSCI 5582 Fall 2006

Annealing

• Based on a metallurgical metaphor
– Start with a temperature set very high

and slowly reduce it.
– Run hillclimbing with the twist that you

can occasionally replace the current
state with a worse state based on the
current temperature and how much
worse the new state is.

 9

CSCI 5582 Fall 2006

Annealing

• More formally…
– Generate a new neighbor from current

state.
– If it’s better take it.
– If it’s worse then take it with some

probability proportional to the
temperature and the delta between the
new and old states.

CSCI 5582 Fall 2006

Simulated annealing
function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem
schedule, a mapping from time to temperature

local variables: current, a node.
 next, a node.
T, a “temperature” controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do

T ← schedule[t]
if T = 0 then return current
next ← a randomly selected successor of current
∆E ← VALUE[next] - VALUE[current]
if ∆E > 0 then current ← next
else current ← next only with probability e∆E /T

CSCI 5582 Fall 2006

Properties of simulated
annealing search

• One can prove: If T decreases slowly
enough, then simulated annealing search
will find a global optimum with probability
approaching 1

• Widely used in VLSI layout, airline
scheduling, etc

 10

CSCI 5582 Fall 2006

Coming Up

• Thursday: Constraint satisfaction
(Chapter 5)

• Tuesday: Game playing (Chapter 6)
• Thursday: Quiz

