CSCI 5582 Artificial Intelligence
 Lecture 19
 Jim Martin

Today 11/13

- Decision Lists
- Break
- Quiz review
- New HWs
- Boosting

Decision Lists

- Each element in the list is a test that an object can pass or fail.
- If it passes, emit the label associated with the test.
- If it fails, move to the next test.
- If an object fails all the tests emit a default answer.
- The tests are propositional logic statements where the feature/value combinations are atomic propositions.

Decision Lists

- Key parameters:
- Maximum allowable length of the list
- Maximum number of elements in a test
- Logical connectives allowed in the test
- The longer the lists, and the more complex the tests, the larger the hypothesis space.

Decision List Learning

function DECISION-LIST-LEARNING(examples) returns a decision list, No or failure
if examples is empty then return the value No
$\mathrm{t} \leftarrow \mathrm{a}$ test that matches a nonempty subset examples $_{t}$ of examples
such that the members of examples ${ }_{t}$ are all positive or all negative
if there is no such t then return failure
if the examples in examples ${ }_{t}$ are positive then $o \leftarrow$ Yes
else $\sigma \leftarrow N o$
return a decision list with initial test t and outcome o and remaining elements given by DECISION-LIST-LEARNING(examples - examples $_{t}$)

Training Data

${ }^{\#}$	F1 (In/Out)	F2 (Meat/Veg)	F3 (Red/Gree n/Blue)	Label
${ }^{1}$	In	Veg	Red	Yes
${ }^{2}$	Out	Meat	Green	Yes
${ }^{3}$	In	Veg	Red	Yes
${ }^{4}$	In	Meat	Red	Yes
5	In	Veg	Red	Yes
${ }^{6}$	Out	Meat	Green	Yes
7^{7}	Out	Meat	Red	No
8^{8}	Out	Veg	Green	No

Decision Lists

- Let's try
[F1 = In] \rightarrow Yes

Training Data

*	$\begin{gathered} \text { F1 } \\ \text { (In/Out) } \end{gathered}$	$\begin{gathered} \text { F2 } \\ \text { (Meat/Veg) } \end{gathered}$	F3 (Red/Gree n/Blue)	Label
2	Out	Meat	Green	Yes
6	Out	Meat	Green	Yes
	Out	Meat	Red	No
${ }^{8}$	Out	Veg	Green	No

Decision Lists

- [F1 = In] \rightarrow Yes
- [F2 = Veg] \rightarrow No

Decision Lists

- [F1 = In] \rightarrow Yes
- [F2 = Veg] \rightarrow No
- [F3=Green] \rightarrow Yes

Decision Lists

- [F1 = In] \rightarrow Yes
- [F2 = Veg] \rightarrow No
- [F3=Green] \rightarrow Yes
- No

Covering and Splitting

- The decision tree learning algorithm is a splitting approach.
- The training set is split apart according to the results of a test
- Until all the splits are uniform
- Decision list learning is a covering algorithm
- Tests are generated that uniformly cover a subset of the training set
- Until all the data are covered

Choosing a Test

- What tests should be put at the front of the list?
- Tests that are simple?
- Tests that uniformly cover large numbers of examples?
- Both?

Choosing a Tes \dagger

- What about choosing tests that only cover small numbers of examples?
- Would that ever be a good idea?
- Sure, suppose that you have a large heterogeneous group with one label.
- And a small homogeneous group with a different label.
- You don't need to characterize the big group, just the small one.

Decision Lists

- The flexibility in defining the tests and the length of the lists is a big advantage to decision lists.
- (Decision trees can end up being a bit unwieldy)

What Does Matter?

- I said that in practical applications the choice of ML technique doesn' \dagger really matter.
- They will all result in the same error rate (give or take)
- So what does matter?

What Matters

- Having the right set of features in the training set
- Having enough training data

Break

- The next quiz will be on $11 / 28$.
- It will cover the ML material and the probabilistic sequence material.
- The readings for this quiz are:
- Chapter 18
- Chapter 19
- Chapter 20: 712-718
- HMM chapter posted on the web

Quiz

- 1. True
- 2. Soundness: All inferred sentences are entailed.
- 3. Stench and Wumpus
- 4. Probabilities and Wumpus
- 5. Belief nets.

Wumpus

Wumpus

- What do you know about the presence or absence of a wumpus in $[2,3]$ before the game even begins?
- What do you know about it after you first detect a stench in [1,3]?

Wumpus (Q 3)

a) $\sim S 22=>\left(\sim w 23^{\wedge} \sim w 12^{\wedge} \sim w 32^{\wedge} \sim w 21\right)$
b) By MP
a) ~S22 and the above rule:
~w23 ^ ~w12 ^ ~w32 ^ ~w21
By And elim ~w23
c) We know $\sim W x, y$ in all but $W 33$. We know that
there has to be one wumpus
(w11 or w12 or w13...)
Successive resolutions will result in W33.
Wumpus (Q4)

$P(W \mid S)=$	$P(S \mid W) P(W) / P(S)$
	$=P(W) / P(S)$
$=$	$.25 / P(S)$
$=$	$.25 / P(S, W)+P(S, \sim W)$
$=.25 / P(S \mid W) P(W)+P(S \mid \sim W) P(\sim W)$	
$=.25 /\left(.25+P(S \mid \sim W)^{\star} .75\right)$	
csci 5882 Fall2006	

Q5

- b) $P(L \mid S)=P(L, S) / P(S)$

$$
P(L) \sum_{c} P(c) P(S \mid L, c)
$$

$\overline{\sum_{x} \sum_{c} \sum_{l} P(c) P(l) P(S \mid l, c) P(x \mid l)}$

- c) $P(C \mid S, \sim X)=P(C, S, \sim X) / P(S, \sim X)$

$$
\frac{P(C) \sum_{l} P(S \mid l, C) P(\sim X \mid l)}{\sum_{c} \sum_{l} P(c) P(l) P(S \mid l, c) P(\sim X \mid l)}
$$

HWs

- We'll have two remaining HWs.
- The next one will be due 12/5; the second is due on $12 / 14$.
- Basic idea for assignment 1:
- I give you two bodies of texts by two authors (labeled). You train a system to recognize the work of each author.
- To test I give you new texts by each author.

Colloquium

- I'm giving the colloquium on Thursday on natural language processing research here at CU.
- Your chance to heckle me in public.
- Ask me where the HWs are.

Computational Learning Theory

- The big elements of this are:
- $|H|$ the size of the hypothesis space
- For lists, the number of possible lists
- The number of training instances
- The acceptable error rate of a hypothesis
- The probability that a given hypothesis is a good one (has an error rate in the acceptable range).

CLT

- First an exercise with a coin...
- A bunch of folks get identical copies of a coin. Their job is to say its either a normal coin or a two-headed coin. By getting the results of flips (without examining both sides)
- Let's say that you go about this by assuming one hypothesis and try to disprove that hypothesis via flips

Coin Flipping

- Ok, given this framework what's a good hypothesis (fair vs. fake).
- Fake
- Fake can be disproved by one flip (tails)
- Fair can't be logically disproved by any number of flips.

Coin Flipping

- You let these people flip five times.
- The lucky folks will encounter a tails and report the coin is fair.
- The unlucky folks will get 5 heads in a row and... report that they think its fake.
- How many? 1/32

Coin Flipping

- Say there are 320 flippers... How many unlucky folks will there be?
- 10
- Ok... now you decide you're going to ask a random person what they think about this coin and that's the answer you're going to go with.
- What's the probability that you'll stumble over an unlucky flipper
- 1/32

CLT

- Back to learning...
- Learning is viewed as candidate hypothesis elimination.
- Each training example can be seen as a filter on the space of possible hypotheses
- Hypotheses inconsistent with a training example are filtered out leaving the ones that are consistent (give the right answer)
- What do we know about those?

CLT

- Ok what about the ones that are consistent... two kinds
- Hypotheses that are flat out wrong, but just coincidentally give the right answer
- Hypotheses that are basically right (and got the right answer because they're normally right)

CLT

- So run the training data as a filter on the hypotheses
- When the data runs out pick a random hypothesis from among the ones still left standing (remember we don't know what the right answer is).
- Can we say something about the probability of being unlucky and picking a hypothesis that is really wrong?

CLT

- Yup... its clearly based on the size of the hypothesis space and just how long a bad hypothesis can keep giving the right answers (ie. The size of the training set).

Bad Hypotheses

- Say we're happy with any hypothesis that has an error rate no more than 5\%.
- So any hypothesis with an error rate greater than 5% is in H_bad.

Bad Hypotheses

- Look at one with error rate of 20%. The probability of it being correct on any given example is?

. 8

- Probability correct on n examples?

$$
\text { . }{ }^{\wedge} n
$$

- How many of those will there be? ? < . 8^{\wedge} n* $\mid \mathrm{H}$ _bad $\left|<.8^{\wedge} n^{\star}\right| \mathrm{H} \mid$

So...

- The name of the game is to say that if I want to be $X \%$ sure that I'm going to have a solution with an error rate no worse than $\mathrm{V} \%$ then either I have to
- Reduce the number of surviving bad hypotheses
- More training examples
- Or reduce $\mid \mathrm{H\mid}$
- Restrict the hypothesis space by restricting the expressiveness of the possible answers
- Or provide a bias for how to select from among surviving hypotheses (Occam).

Nex \dagger

- Thursday
- Ensembles (Sec 18.4)
- SVMs and NNs (20.5 and 20.6)
- Next week
- Chapter 19: learning with knowledge

