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Today 11/2

• Machine learning
– Review Naïve Bayes
– Decision Trees
– Decision Lists
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Where we are

• Agents can
– Search
– Represent stuff
– Reason logically
– Reason probabilistically

• Left to do
– Learn
– Communicate
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Connections

• As we’ll see there’s a strong
connection between
– Search
– Representation
– Uncertainty

• You should view the ML discussion as
a natural extension of these previous
topics
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Connections

• More specifically
– The representation you choose defines

the space you search
– How you search the space and how much

of the space you search introduces
uncertainty

– That uncertainty is captured with
probabilities
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Supervised Learning: Induction

• General case:
– Given a set of pairs (x, f(x)) discover the

function f.
• Classifier case:

– Given a set of pairs (x, y) where y is a
label, discover a function that correctly
assigns the correct labels to the x.
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Supervised Learning: Induction

• Simpler Classifier Case:
– Given a set of pairs (x, y) where x is an

object and y is either a + if x is the right
kind of thing or a – if it isn’t. Discover a
function that assigns the labels
correctly.
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Learning as Search

• Everything is search…
– A hypothesis is a guess at a function

that can be used to account for the
inputs.

– A hypothesis space is the space of all
possible candidate hypotheses.

– Learning is a search through the
hypothesis space for a good hypothesis.



5

CSCI 5582 Fall 2006

What Are These Objects

• By object, we mean a logical
representation.
– Normally, simpler representations are

used that consist of fixed lists of
feature-value pairs.

• A set of such objects paired with
answers, constitutes a training set.
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Naïve-Bayes Classifiers

• Argmax  P(Label | Object)

• P(Label | Object) =
   P(Object | Label)*P(Label)

P(Object)
• Where Object is a feature vector.
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Naïve Bayes

• Ignore the denominator
• P(Label) is just the prior for each

class. I.e.. The proportion of each
class in the training set

• P(Object|Label) = ???
– The number of times this object was

seen in the training data with this label
divided by the number of things with
that label.
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Nope

• Too sparse, you probably won’t see enough
examples to get numbers that work.

• Answer
– Assume the parts of the object are independent

so P(Object|Label) becomes

! = )|( LabelValueFeatureP
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Training Data

NoGreenVegOut8

NoRedMeatOut7

YesGreenMeatOut6

YesRedVegIn5

YesRedMeatIn4

YesRedVegIn3

YesGreenMeatOut2

YesRedVegIn1

LabelF3
(Red/Gree
n/Blue)

F2
(Meat/Veg)

F1
(In/Out)

#
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Example
• P(Yes) = ¾, P(No)=1/4

• P(F1=In|Yes)= 4/6
• P(F1=Out|Yes)=2/6
• P(F2=Meat|Yes)=3/6
• P(F2=Veg|Yes)=3/6
• P(F3=Red|Yes)=4/6
• P(F3=Green|Yes)=2/6

• P(F1=In|No)= 0
• P(F1=Out|No)=1
• P(F2=Meat|No)=1/2
• P(F2=Veg|No)=1/2
• P(F3=Red|No)=1/2
• P(F3=Green|No)=1/2
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Example

• In, Meat, Green
– First note that you’ve never seen this

before
– So you can’t use stats on In, Meat, Green

since you’ll get a zero for both yes and
no.
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Example: In, Meat, Green

• P(Yes|In, Meat,Green)=
   P(In|Yes)P(Meat|Yes)P(Green|Yes)P(Yes)

• P(No|In, Meat, Green)=
       P(In|No)P(Meat|No)P(Green|No)P(No)

Remember we’re dumping the denominator
since it can’t matter
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Naïve Bayes

• This technique is always worth trying
first.
– Its easy
– Sometimes it works well enough
– When it doesn’t, it gives you a baseline

to compare more complex methods to
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Decision Trees

• A decision tree is a tree where
– Each internal node of the tree tests a

single feature of an object
– Each branch follows a possible value of

each feature
– The leaves correspond to the possible

labels on the objects
– DTs easily handle multiclass labeling

problems.
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Example Decision Tree

CSCI 5582 Fall 2006

Decision Tree Learning

• Given a training set find a tree that
correctly assigns labels (classifies)
the elements of the training set.

• Sort of…there might be lots of such
trees.  In fact some of them look a
lot like tables.
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Training Set
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Decision Tree Learning

• Start with a null tree.
• Select a feature to test and put it in tree.
• Split the training data according to that

test.
• Recursively build a tree for each branch
• Stop when a test results in a uniform label

or you run out of tests.
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Well

• What makes a good tree?
– Trees that cover the training data
– Trees that are small…

• How should features be selected?
– Choose features that lead to small trees.
– How do you know if a feature will lead to

a small tree?
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Search

• What’s that as a search?
• We want a small tree that covers the

training data.
• So… search through the trees in

order of size for a tree that covers
the training data.

• No need to worry about bigger trees
that also cover the data.
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Small Trees?

• Small trees are good trees…
– More precisely, all things being equal we

prefer small trees to larger trees.
• Why?

– Well how many small trees are there
compared with larger trees?

– Lots of big trees, not many small trees.
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Small Trees

• Not many small trees, lots of big
trees.
– So odds are less

• that you’ll run across a good looking small
tree that turns out bad

• then a bigger tree that looks good but turns
out bad…
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What?

• What does looks good, turns out bad
mean?
– It means doing well on the training data

and not well on the testing data
• We want trees that work well on

both.
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Finding Small Trees

• What stops the recursion?
– Running out of tests (bad).
– Uniform samples at the leaves

• To get uniform samples at the leaves, choose
features that maximally separate the
training instances
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Information Gain

• Roughly…
– Start with a pure guess the majority

strategy. If I have a 60/40 split (y/n) in
the training, how well will I do if I always
guess yes?

– Ok so now iterate through all the
available features and try each at the
top of the tree.
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Information Gain

• Then guess the majority label in each
of the buckets at the leaves. How
well will I do?
– Well it’s the weighted average of the

majority distribution at each leaf.
• Pick the feature that results in the

best predictions.
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Patrons

• Picking Patrons at the top takes the
initial 50/50 split and produces three
buckets
– None: 0 Yes, 2 No
– Some: 4 Yes, 0 No
– Full: 2 Yes, 4 No

• That’s 10 right out of 12
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Training and Evaluation

• Given a fixed size training set, we
need a way to
– Organize the training
– Assess the learned system’s likely

performance on unseen data
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Test Sets and Training Sets

• Divide your data into three sets:
– Training set
– Development test set
– Test set

1. Train on the training set
2. Tune using the dev-test set
3. Test on withheld data
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Cross-Validation
• What if you don’t have enough training

data for that?
1. Divide your data into N sets and put one set

aside (leaving N-1)
2. Train on the N-1 sets
3. Test on the set aside data
4. Put the set aside data back in and pull out

another set
5. Go to 2
6. Average all the results
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Performance Graphs

• Its useful to know the performance of the
system as a function of the amount of
training data.

CSCI 5582 Fall 2006

Break

• Quiz is pushed back to Tuesday,
November 28.
– So you can spend Thanksgiving studying.
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Decision Lists
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Decision Lists

• Key parameters:
– Maximum allowable length of the list
– Maximum number of elements in a test
– Logical connectives allowed in the test

• The longer the lists, and the more
complex the tests, the larger the
hypothesis space.
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Decision List Learning
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Training Data

NoGreenVegOut8

NoRedMeatOut7

YesGreenMeatOut6

YesRedVegIn5

YesRedMeatIn4

YesRedVegIn3

YesGreenMeatOut2

YesRedVegIn1

LabelF3
(Red/Gree
n/Blue)

F2
(Meat/Veg)

F1
(In/Out)

#
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Decision Lists

• Let’s try
[F1 = In]  Yes
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Training Data

NoGreenVegOut8

NoRedMeatOut7

YesGreenMeatOut6

YesRedVegIn5

YesRedMeatIn4

YesRedVegIn3

YesGreenMeatOut2

YesRedVegIn1

LabelF3
(Red/Gree
n/Blue)

F2
(Meat/Veg)

F1
(In/Out)

#
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Decision Lists

• [F1 = In]  Yes
• [F2 = Veg]  No
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Training Data

NoGreenVegOut8

NoRedMeatOut7

YesGreenMeatOut6

YesRedVegIn5

YesRedMeatIn4

YesRedVegIn3

YesGreenMeatOut2

YesRedVegIn1

LabelF3
(Red/Gree
n/Blue)

F2
(Meat/Veg)

F1
(In/Out)

#
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Decision Lists

• [F1 = In]  Yes
• [F2 = Veg]  No
• [F3=Green]  Yes
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Training Data

NoGreenVegOut8

NoRedMeatOut7

YesGreenMeatOut6

YesRedVegIn5

YesRedMeatIn4

YesRedVegIn3

YesGreenMeatOut2

YesRedVegIn1

LabelF3
(Red/Gree
n/Blue)

F2
(Meat/Veg)

F1
(In/Out)

#
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Decision Lists

• [F1 = In]  Yes
• [F2 = Veg]  No
• [F3=Green]  Yes
• No
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Covering and Splitting
• The decision tree learning algorithm is a

splitting approach.
– The training set is split apart according to the

results of a test
– Until all the splits are uniform

• Decision list learning is a covering
algorithm
– Tests are generated that uniformly cover a

subset of the training set
– Until all the data are covered
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Choosing a Test

• What tests should be put at the
front of the list?
– Tests that are simple?
– Tests that uniformly cover large

numbers of examples?
– Both?
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Choosing a Test

• What about choosing tests that only
cover small numbers of examples?
– Would that ever be a good idea?

• Sure, suppose that you have a large
heterogeneous group with one label.

• And a very small homogeneous group with a
different label.

• You don’t need to characterize the big group,
just the small one.
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Decision Lists

• The flexibility in defining the tests
and the length of the lists is a big
advantage to decision lists.
– (Decision trees can end up being a bit

unwieldy)
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What Does Matter?

• I said that in practical applications
the choice of ML technique doesn’t
really matter.

• They will all result in the same error
rate (give or take)

• So what does matter?
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What Matters

• Having the right set of features in
the training set

• Having enough training data


