CSCI 5582 Artificial Intelligence
 Lecture 17
 Jim Martin

Today 10/31

- HMM Training (EM)
- Break
- Machine Learning

Urns and Balls

- П Urn 1: 0.9; Urn 2: 0.1
- A

	Urn 1	Urn 2
Urn 1	0.6	0.4
Urn 2	0.3	0.7

- B

	Urn 1	Urn 2
Red	0.7	0.4
Blue	0.3	0.6

Urns and Balls

- Let's assume the input (observables) is Blue Blue Red (BBR)
- Since both urns contain red and blue balls any path through this machine could produce this output

Urns and Balls

Blue Blue Red

1	1	1
1	$\left(0.9^{\star} 0.3\right)^{\star}\left(0.6^{\star} 0.3\right)^{\star}\left(0.6^{\star} 0.7\right)=0.0204$	
1	1	$\left(0.9^{\star} 0.3\right)^{\star}\left(0.6^{\star} 0.3^{\star}\left(0.4^{\star} 0.4\right)=0.0077\right.$
1	2	1
1	$\left(0.9^{\star} 0.3\right)^{\star}\left(0.4^{\star} 0.6\right)^{\star}\left(0.3^{\star} 0.7\right)=0.0136$	
2	$\left(0.9^{\star} 0.3\right)^{\star}\left(0.4^{\star} 0.6\right)^{\star}\left(0.7^{\star} 0.4\right)=0.0181$	
2	1	$\left(0.1^{\star} 0.6\right)^{\star}\left(0.3^{\star} 0.7\right)^{\star}\left(0.6^{\star} 0.7\right)=0.0052$
2	1	2
2	$\left(0.1^{\star} 0.6\right)^{\star}\left(0.3^{\star} 0.7\right)^{\star}\left(0.4^{\star} 0.4\right)=0.0020$	
2	2	$\left.2.1^{\star} 0.6\right)^{\star}\left(0.7^{\star} 0.6\right)^{\star}\left(0.3^{\star} 0.7\right)=0.0052$

Urns and Balls

- Baum-Welch Re-estimation (EM for HMMs)
- What if I told you I lied about the numbers in the model (π, A, B).
- Can I get better numbers just from the input sequence?

Urns and Balls

- Yup
- Just count up and prorate the number of times a given transition was traversed while processing the inputs.
- Use that number to re-estimate the transition probability

Urns and Balls

- But... we don't know the path the input took, we're only guessing
- So prorate the counts from all the possible paths based on the path probabilities the model gives you
- But you said the numbers were wrong
- Doesn't matter; use the original numbers then replace the old ones with the new ones.

Urn Example

Let's re-estimate the Urn1->Urn2 transition and the Urn1->Urn1 transition (using Blue Blue Red as training data).

Urns and Balls

Blue Blue Red

111	$(0.9 * 0.3)^{\star}(0.6 * 0.3)^{\star}(0.6 * 0.7)=0.0204$
112	$(0.9 * 0.3) *(0.6 * 0.3)^{\star}(0.4 * 0.4)=0.0077$
121	$(0.9 * 0.3) *(0.4 * 0.6)^{\star}(0.3 * 0.7)=0.0136$
122	$(0.9 * 0.3)^{\star}(0.4 * 0.6)^{\star}\left(0.7^{*} 0.4\right)=0.0181$

| 2 | 1 |
| :--- | :--- | 1

Urns and Balls

- That's
- (.0077*1)+(.0136*1)+(.0181*1)+(.0020*1)
= . 0414
- Of course, that's not a probability, it needs to be divided by the probability of leaving Urn 1 total.
- There's only one other way out of Urn 1... go from Urn 1 to Urn 1

Urns and Balls

Blue Blue Red

111	$(0.9 * 0.3) *(0.6 * 0.3) *(0.6 * 0.7)=0.0204$
112	$(0.9 * 0.3) *(0.6 * 0.3) *(0.4 * 0.4)=0.0077$
121	$(0.9 * 0.3) \star(0.4 * 0.6) *(0.3 * 0.7)=0.0136$
122	$(0.9 * 0.3) \star(0.4 * 0.6) *(0.7 * 0.4)=0.0181$
211	$(0.1 * 0.6)^{*}\left(0.3^{*} 0.7\right)^{*}(0.6 * 0.7)=0.0052$
212	$(0.1 * 0.6) *\left(0.3^{\star} 0.7\right)^{\star}\left(0.4^{\star} 0.4\right)=0.0020$
221	$(0.1 * 0.6)^{\star}(0.7 * 0.6)^{\star}\left(0.3^{*} 0.7\right)=0.0052$
222	$(0.1 * 0.6) *(0.7 * 0.6)^{\star}\left(0.7^{*} 0.4\right)=0.0070$

Urns and Balls

- That's just
- (2*.0204)+(1*.0077)+(1*.0052) $=.0537$
- Again not what we need but we're closer... we just need to normalize using those two numbers.

Urns and Balls

- The 1->2 transition probability is .0414/(.0414+.0537) $=0.435$
- The $1->1$ transition probability is $.0537 /(.0414+.0537)=0.565$
- So in re-estimation the $1->2$ transition went from . 4 to .435 and the 1->1 transition went from . 6 to .565

Urns and Balls

- As with Problems 1 and 2, you wouldn't actually compute it this way. The Forward-Backward algorithm reestimates these numbers in the same dynamic programming way that Viterbi and Forward do.

Speech

- And... in speech recognition applications you don't actually guess randomly and then train.
- You get initial numbers from real data: bigrams from a corpus, and phonetic outputs from a dictionary, etc.
- Training involves a couple of iterations of Baum-Welch to tune those numbers.

Break

- Start reading Chapter 18 for next time (Learning)
- Quiz 2
- I'll go over it as soon as the CAETE students get in done
- Quiz 3
- We're behind schedule. So quiz 3 will be delayed. I'll update the schedule soon.

Where we are

- Agents can
- Search
- Represent stuff
- Reason logically
- Reason probabilistically
- Left to do
- Learn
- Communicate

Connections

- As we'll see there's a strong connection between
- Search
- Representation
- Uncertainty
- You should view the ML discussion as a natural extension of these previous topics

Connections

- More specifically
- The representation you choose defines the space you search
- How you search the space and how much of the space you search introduces uncertainty
- That uncertainty is captured with probabilities

Kinds of Learning

- Supervised
- Semi-Supervised
- Unsupervised

What's to Be Learned?

- Lots of stuff
- Search heuristics
- Game evaluation functions
- Probability tables
- Declarative knowledge (logic sentences)
- Classifiers
- Category structures
- Grammars

Supervised Learning: Induction

- General case:
- Given a set of pairs $(x, f(x))$ discover the function f.
- Classifier case:
- Given a set of pairs (x, y) where y is a label, discover a function that correctly assigns the correct labels to the x.

Supervised Learning: Induction

- Simpler Classifier Case:
- Given a set of pairs (x, y) where x is an object and y is either $a+$ if x is the right kind of thing or a - if it isn't. Discover a function that assigns the labels correctly.

Learning as Search

- Everything is search...
- A hypothesis is a guess at a function that can be used to account for the inputs.
- A hypothesis space is the space of all possible candidate hypotheses.
- Learning is a search through the hypothesis space for a good hypothesis.

Hypothesis Space

- The hypothesis space is defined by the representation used to capture the function that you are trying to learn.
- The size of this space is the key to the whole enterprise.

Kinds of Classifiers

- Tables
- Nearest neighbors
- Probabilistic methods
- Decision trees
- Decision lists
- Neural networks
- Genetic algorithms
- Kernel methods

What Are These Objects

- By object, we mean a logical representation.
- Normally, simpler representations are used that consist of fixed lists of feature-value pairs
- This assumption places a severe restriction on the kind of stuff that can be learned
- A set of such objects paired with answers, constitutes a training set.

The Simple Approach

- Take the training data, put it in a table along with the right answers.
- When you see one of them again retrieve the answer.

Neighbor-Based Approaches

- Build the table, as in the table-based approach.
- Provide a distance metric that allows you compute the distance between any pair of objects.
- When you encounter something not seen before, return as an answer the label on the nearest neighbor.

Naïve-Bayes Approach

- Argmax $P($ Label \mid Object $)$
- $P($ Label | Object $)=$ P(Object | Label)*P(Label) $P($ Object $)$
- Where Object is a feature vector.

Naïve Bayes

- Ignore the denominator because of the argmax.
- $P($ Label $)$ is just the prior for each class. I.e.. The proportion of each class in the training set
- $P($ Object \mid Label $)=? ? ?$
- The number of times this object was seen in the training data with this label divided by the number of things with that label.

Nope

- Too sparse, you probably won't see enough examples to get numbers that work.
- Answer
- Assume the parts of the object are independent given the label, so P(Object \mid Label) becomes

$$
\prod P(\text { Feature }=\text { Value } \mid \text { Label })
$$

Naïve Bayes

- So the final equation is to argmax over all labels

$$
P(\text { label }) \prod_{i} P\left(F_{i}=\text { Value } \mid \text { label }\right)
$$

Training Data				
\#	$\begin{gathered} \text { F1 } \\ \text { (In/Out) } \end{gathered}$	$\begin{gathered} \text { F2 } \\ \text { (Meat/Veg) } \end{gathered}$	F3 (Red/Green /Blue)	Label
1	In	Veg	Red	Yes
2	Out	Meat	Green	Yes
3	In	Veg	Red	Yes
4	In	Meat	Red	Yes
5	In	Veg	Red	Yes
6	Out	Meat	Green	Yes
7	Out	Meat	Red	No
8	Out	Veg	Green	No

Example

- $P($ Yes $)=\frac{3}{4}, P($ No $)=1 / 4$
- $P(F 1=I n \mid$ Yes $)=4 / 6$
- $P(F 1=I n \mid N o)=0$
- $P(F 1=O u t \mid$ Yes $)=2 / 6$
- $P(F 2=$ Meat \mid Yes $)=3 / 6$
- $P(F 1=O u t \mid N o)=1$
- $P(F 2=$ Veg \mid Yes $)=3 / 6$
- $P(F 2=$ Meat \mid No $)=1 / 2$
- $P(F 3=$ Red \mid Yes $)=4 / 6$
- $P(F 2=V e g \mid N o)=1 / 2$
- $P(F 3=$ Green \mid Yes $)=2 / 6$
- $P(F 3=\operatorname{Red} \mid \mathrm{No})=1 / 2$
- $P(F 3=G r e e n \mid N o)=1 / 2$

Example

- In, Meat, Green
- First note that you've never seen this before
- So you can't use stats on In, Meat, Green since you'll get a zero for both yes and no.

Example: In, Meat, Green

- $P($ Yes $\mid I n$, Meat,Green $)=$ P(In \mid Yes)P(Meat \mid Yes) $)($ (Green \mid Yes $) P($ Yes $)$
- P(No|In, Meat, Green)= $P($ In \mid No $) P($ Meat \mid No $) P($ Green \mid No $) P(N o)$

Remember we're dumping the denominator since it can't matter

Naïve Bayes

- This technique is always worth trying first.
- Its easy
- Sometimes it works well enough
- When it doesn't, it gives you a baseline to compare more complex methods to

