CSCI 5582 Artificial Intelligence
 Lecture 16
 Jim Martin

Today 10/24

- Review basic reasoning about sequences
- Break
- Hidden events
- 3 Problems

Chain Rule

Rewriting that's just

P(E1)P(E2|E1)P(E3|E1,E2)P(E4|E1,E2,E3)P(E5|E1,E2,E3,E4)

The probability of a sequence of events is just the product of the conditional probability of each event given it's predecessors (parents/causes in belief net terms).

Markov Assumption

- This is just a sequence based independence assumption just like with belief nets.
- Not all the previous events matter P(EventN|Event1 to Event N-1) $=$
$P($ EventN|EventN-1+K to Event $\mathrm{N}-1)$

Markov Models

- You can view simple Markov assumptions as arising from underlying probabilistic state machines.
- In the simplest case (first order), events correspond to states and the probabilities are governed by probabilities on the transitions in the machine.

Weather

- Let's say we're tracking the weather and there are 4 possible events (each day, only one per day)
- Sun, clouds, rain, snow

Example

- In this case we need a 4×4 matrix of transition probabilities.
- For example P(Rain|Cloudy) or $P\left(\right.$ Sunny ${ }^{\text {Sunny }}$) etc
- And we need a set of initial probabilities P (Rain). That's just an array of 4 numbers.

Example

- So to get the probability of a sequence like
- Rain rain rain snow
- You just march through the state machine
- P(Rain)P(rain|rain)P(rain|rain)P(snow|rain)

Example

- Say that I tell you that
- Rain rain rain snow has happened
- How would you answer
-What's the most likely thing to happen next?
- Say I set this all up, gave you a big history of weather events, but I didn't give you the probabilities in the model?

Hidden Markov Models

- Add an output to the states. I.e. when a state is entered it outputs a symbol.
- You can view the outputs, but not the states directly.
- States can output different symbols at different times
- Same symbol can come from many states.

Hidden Markov Models

- The point
- The observable sequence of symbols does not uniquely determine a sequence of states.
- Can we nevertheless reason about the underlying model, given the observations.

Hidden Markov Model Assumptions

- Now we're going to make two independence assumptions
- The state we're in depends probabilistically only on the state we were last in (first order Markov assumpution)
- The symbol we're seeing only depends probabilistically on the state we're in

Hidden Markov Models

- Now the model needs
- The initial state priors

$$
\text { - P(State } \left.{ }_{i}\right)
$$

- The transition probabilities (as before)
- P(State ${ }_{j} \mid$ State $\left._{k}\right)$
- The output probabilities
- P(Observation ${ }_{i} \mid$ State $_{k}$)

HMMs

- The joint probability of a state sequence X and an observation sequence E is...
$P\left(X_{0}, X_{1}, \ldots X_{t}, E_{1}, \ldots E_{t}\right)=P\left(X_{0}\right) P\left(E_{0} \mid X_{0}\right) \prod_{i=1}^{t} P\left(X_{i} \mid X_{i-1}\right) P\left(E_{i} \mid X_{i}\right)$

Noisy Channel Applications

- The hidden model represents an original signal (sequence of words, letters, etc)
- This signal is corrupted probabilistically. Use an HMM to recover the original signal
- Speech, OCR, language translation, spelling correction,...

Noisy Channel Basis

Decoding...
Argmax $P($ state seqlobs $)=$ P(obs | state seq)P(state seq)
Now make 2 First Order Markov assumptions:
Outputs depend only on the state
Current state depends only on the previous state
$P\left(X_{0}, X_{1}, \ldots X_{t}, E_{1}, \ldots E_{t}\right)=P\left(X_{0}\right) P\left(E_{0} \mid X_{0}\right) \prod_{i=1}^{t} P\left(X_{i} \mid X_{i-1}\right) P\left(E_{i} \mid X_{i}\right)$
Wednesday, November 15, 2006

Three HMM Problems

- The probability of an observation sequence given a model
- Forward algorithm
- Prediction falls out from this
- The most likely path through a model given an observed sequence
- Viterbi algorithm
- Sometimes called decoding
- Finding the most likely model (parameters) given an observed sequence
- EM Algorithm

Problem 1

- What's the probability assigned to a given sequence of observations given a model
- P(Output sequence|Model)

Problem 1

- Solution:
- Enumerate all the possible paths through a model and calculate the probability that each path could have produced the observed sequence.
- Sum them all; that's the probability that this model could have produced the observed output

Problem 2

- This is really diagnosis over again. What state sequence is most likely to have caused this observed sequence?
- Argmax P(State Sequence | Observations)

Problem 2

- Solution:
- Enumerate all the paths through the model and calculate the probability that each path could have produced the observed output.
- Pick the path with the highest probability (argmax)

Problem 3

- This turns out to be a simple local optimization (hill-climbing) search for the set of parameters (A, B, π) that maximizes the probability of the observed sequence.

Problems

- Of course, there's a minor problem with our solutions to Problems 1 and 2.
- There are too many paths to enumerate them all and calculate their probabilities
- The solution is to use the Markov assumption to get a dynamic programming solution to each

Urn Example

- A genie has two urns filled with red and blue balls. The genie selects an urn and then draws a ball from it (and replaces it). The genie then selects either the same urn or the other one and then selects another ball...

Urn Example

Urns and Balls

- П Urn 1: 0.9; Urn 2: 0.1
- A

	Urn 1	Urn 2
Urn 1	0.6	0.4
Urn 2	0.3	0.7

- B

	Urn 1	Urn 2
Red	0.7	0.4
Blue	0.3	0.6

Urns and Balls: Problem 1

- Let's assume the input (observables) is Blue Blue Red (BBR)
- Since both urns contain red and blue balls any path through this machine could produce this output

Urns and Balls

- But those paths are not equally likely
- We need the probability of either urn starting the string
- The probability of the next urn given the first one
- The probability of the given urn giving up either a red or blue ball
- For each possible path

Urns and Balls

Blue Blue Red: We want P (this seq I model)

111	$(0.9 * 0.3)^{\star}(0.6 * 0.3)^{\star}(0.6 * 0.7)=0.0204$
112	$(0.9 * 0.3) \star(0.6 * 0.3) \star(0.4 * 0.4)=0.0077$
121	$(0.9 * 0.3) \star(0.4 * 0.6)^{\star}(0.3 * 0.7)=0.0136$
122	$(0.9 * 0.3)^{\star}\left(0.4^{\star} 0.6\right)^{\star}(0.7 * 0.4)=0.0181$
211	$(0.1 * 0.6)^{\star}(0.3 * 0.7)^{\star}(0.6 * 0.7)=0.0052$
212	$(0.1 * 0.6)^{\star}\left(0.3^{\star} 0.7\right)^{\star}\left(0.4^{\star} 0.4\right)=0.0020$
221	$(0.1 * 0.6) *(0.7 * 0.6)^{\star}\left(0.3^{*} 0.7\right)=0.0052$
222	$(0.1 * 0.6) *(0.7 * 0.6) *(0.7 * 0.4)=0.0070$
${ }_{2}$	

Urns and Balls

- Another view of this

Urns and Balls: Viterbi

- Problem 2: Most likely path?
- Argmax P(Path|Observations)
- Sweep through the columns left to right computing the partial path probabilities
- Keep track of the best (MAX) path to each node as you go

Urns and Balls

- Another view of this

Urns and Balls: Forward

- Problem 1: Probability of a input sequence given a model
- P(Inputs | Model)
- Sweep through the columns, left to right, summing the partial path probabilities as you go

Urns and Balls

- Another view of this

Urns and Balls

- EM
- What if I told you I lied about the numbers in the model (π, A, B).
- Can I get better numbers just from the input sequence?

Urns and Balls

- Yup
- Just count up and prorate the number of times a given transition was traversed while processing the inputs.
- Use that number to re-estimate the transition probability

Urns and Balls

- But... we don't know the path the input took, we're only guessing
- So prorate the counts from all the possible paths based on the path probabilities the model gives you
- But you said the numbers were wrong
- Doesn't matter; use the original numbers then replace the old ones with the new ones.

