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Today 10/24

• Review basic reasoning about
sequences

• Break
• Hidden events
• 3 Problems
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Chain Rule

P(E1,E2,E3,E4,E5)
P(E5|E1,E2,E3,E4)P(E1,E2,E3,E4)

P(E4|E1,E2,E3)P(E1,E2,E3)

P(E3|E1,E2)P(E1,E2)

           P(E2|E1)P(E1)
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Chain Rule

Rewriting that’s just
P(E1)P(E2|E1)P(E3|E1,E2)P(E4|E1,E2,E3)P(E5|E1,E2,E3,E4)

The probability of a sequence of events is just the product
of the conditional probability of each event given it’s
predecessors (parents/causes in belief net terms).
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Markov Assumption

• This is just a sequence based
independence assumption just like
with belief nets.
– Not all the previous events matter

 P(EventN|Event1 to Event N-1)=
P(EventN|EventN-1+K to Event N-1)

Wednesday, November 15,
2006

CSCI 5582 Fall 2006 6

First Order Markov

P(E1)P(E2|E1)P(E3|E1,E2)P(E4|E1,E2,E3)P(E5|E1,E2,E3,E4)

P(E1)P(E2|E1)P(E3|E2)P(E4|E3)P(E5|E4)
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Markov Models

• You can view simple Markov assumptions
as arising from underlying probabilistic
state machines.

• In the simplest case (first order),
events correspond to states and the
probabilities are governed by
probabilities on the transitions in the
machine.
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Weather

• Let’s say we’re tracking the weather
and there are 4 possible events (each
day, only one per day)
– Sun, clouds, rain, snow
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Example

Rain

Snow

Sun

Clouds
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Example

• In this case we need a 4x4 matrix of
transition probabilities.
– For example P(Rain|Cloudy) or

P(Sunny|Sunny) etc
• And we need a set of initial

probabilities P(Rain). That’s just an
array of 4 numbers.
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Example

• So to get the probability of a sequence
like
– Rain rain rain snow
– You just march through the state machine
– P(Rain)P(rain|rain)P(rain|rain)P(snow|rain)
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Example

• Say that I tell you that
– Rain rain rain snow has happened
– How would you answer

• What’s the most likely thing to happen next?
– Say I set this all up, gave you a big

history of weather events, but I didn’t
give you the probabilities in the model?
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Hidden Markov Models

• Add an output to the states. I.e. when
a state is entered it outputs a symbol.

• You can view the outputs, but not the
states directly.
– States can output different symbols at

different times
– Same symbol can come from many

states.
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Hidden Markov Models

• The point
– The observable sequence of symbols does not

uniquely determine a sequence of states.
• Can we nevertheless reason about the

underlying model, given the observations.
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Hidden Markov Model
Assumptions

• Now we’re going to make two
independence assumptions
– The state we’re in depends

probabilistically only on the state we
were last in (first order Markov
assumpution)

– The symbol we’re seeing only depends
probabilistically on the state we’re in
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Hidden Markov Models

• Now the model needs
– The initial state priors

• P(Statei)
– The transition probabilities (as before)

• P(Statej|Statek)
– The output probabilities

• P(Observationi|Statek)
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HMMs

• The joint probability of a state sequence X
and an observation sequence E is…

! 

P(X 0,X1,...Xt,E1,...Et) = P(X 0)P(E 0 | X 0) P(Xi | Xi " 1)P(Ei | Xi)
i=1

t

#
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Noisy Channel Applications

• The hidden model represents an
original signal (sequence of words,
letters, etc)

• This signal is corrupted
probabilistically. Use an HMM to
recover the original signal

• Speech, OCR, language translation,
spelling correction,…
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Noisy Channel Basis

Decoding…
Argmax P(state seq|obs) =

       P(obs | state seq)P(state seq)
Now make 2 First Order Markov assumptions:

Outputs depend only on the state
   Current state depends only on the previous

state

! 

P(X 0,X1,...Xt,E1,...Et) = P(X 0)P(E 0 | X 0) P(Xi | Xi " 1)P(Ei | Xi)
i=1

t

#

Wednesday, November 15,
2006

CSCI 5582 Fall 2006 20

Three HMM Problems
• The probability of an observation sequence given a

model
– Forward algorithm
– Prediction falls out from this

• The most likely path through a model given an
observed sequence
– Viterbi algorithm
– Sometimes called decoding

• Finding the most likely model (parameters) given
an observed sequence
– EM Algorithm
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Problem 1

• What’s the probability assigned to a
given sequence of observations given
a model
– P(Output sequence|Model)
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Problem 1

• Solution:
– Enumerate all the possible paths through

a model and calculate the probability
that each path could have produced the
observed sequence.

– Sum them all; that’s the probability that
this model could have produced the
observed output
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Problem 2

• This is really diagnosis over again. What
state sequence is most likely to have
caused this observed sequence?
– Argmax P(State Sequence | Observations)

Wednesday, November 15,
2006

CSCI 5582 Fall 2006 24

Problem 2

• Solution:
– Enumerate all the paths through the

model and calculate the probability that
each path could have produced the
observed output.

– Pick the path with the highest
probability (argmax)
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Problem 3

• This turns out to be a simple local
optimization (hill-climbing) search for
the set of parameters (A, B, π) that
maximizes the probability of the
observed sequence.
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Problems

• Of course, there’s a minor problem
with our solutions to Problems 1 and
2.
– There are too many paths to enumerate

them all and calculate their probabilities
– The solution is to use the Markov

assumption to get a dynamic
programming solution to each
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Urn Example

• A genie has two urns filled with red
and blue balls. The genie selects an
urn and then draws a ball from it (and
replaces it). The genie then selects
either the same urn or the other one
and then selects another ball…
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Urn Example

Urn 1 Urn 2

.6 .7

.4

.3
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Urns and Balls
• Π  Urn 1:  0.9; Urn 2:  0.1
• A

• B

0.70.3Urn 2
0.40.6Urn 1

Urn 2Urn 1

0.60.3Blue
0.40.7Red

Urn 2Urn 1
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Urns and Balls: Problem 1

• Let’s assume the input (observables)
is Blue Blue Red (BBR)

• Since both urns contain
   red and blue balls
   any path through
   this machine
   could produce this output

Urn 1 Urn 2

.4

.3

.6 .7
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Urns and Balls

• But those paths are not equally likely
– We need the probability of either urn

starting the string
– The probability of the next urn given the

first one
– The probability of the given urn giving up

either a red or blue ball
– For each possible path
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Urns and Balls

(0.9*0.3)*(0.4*0.6)*(0.7*0.4)=0.01811 2 2
(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.01361 2 1
(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.00771 1 2
(0.9*0.3)*(0.6*0.3)*(0.6*0.7)=0.02041 1 1

(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.00702 2 2
(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.00522 2 1
(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.00202 1 2
(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.00522 1 1

Blue Blue Red:  We want P(this seq | model)
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Urns and Balls

• Another view of this

U1

U2 U2U2

U1 U1
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Urns and Balls: Viterbi

• Problem 2:  Most likely path?
– Argmax P(Path|Observations)

• Sweep through the columns left to
right computing the partial path
probabilities
– Keep track of the best (MAX) path to

each node as you go
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Urns and Balls

• Another view of this

U1

U2 U2U2

U1 U1

0.27

0.06

0.0486

0.0126

0.0648

0.0252

Blue Blue Red
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Urns and Balls: Forward

• Problem 1: Probability of a input
sequence given a model
– P(Inputs | Model)

• Sweep through the columns, left to
right, summing the partial path
probabilities as you go
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Urns and Balls

• Another view of this

U1

U2 U2U2

U1 U1

0.27

0.06

0.0486

0.0126

0.0648

0.0252

Blue Blue Red

0.0612

0.09
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Urns and Balls

• EM
– What if I told you I lied about the

numbers in the model (π,A,B).
– Can I get better numbers just from the

input sequence?
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Urns and Balls

• Yup
– Just count up and prorate the number of

times a given transition was traversed
while processing the inputs.

– Use that number to re-estimate the
transition probability
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Urns and Balls

• But… we don’t know the path the input
took, we’re only guessing
– So prorate the counts from all the

possible paths based on the path
probabilities the model gives you

• But you said the numbers were wrong
– Doesn’t matter; use the original numbers

then replace the old ones with the new
ones.


