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• Review
• Belief Net Computing
• Sequential Belief Nets
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Review

• Normalization
• Belief Net Semantics
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Normalization

• What do I know about

P(~A| something) and P(A|same something)

They sum to 1
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Normalization
• What if I have this…

P(A, Y)/P(Y)  and P(~A, Y)/P(Y)

And I can compute the numerators but not the
demoninator?

Ignore it and compute what you have, then
normalize

P(A|Y) = P(A,Y)/(P(A,Y)+P(~A,Y))
P(~A|Y) = P(~A,Y)/(P(A,Y)+P(~A,Y))
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Normalization

• Alpha * <0.12, 0.08> = <0.6, 0.4>
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Bayesian Belief Nets

• A compact notation for representing
conditional independence assumptions
and hence a compact way of
representing a joint distribution.

• Syntax:
– A directed acyclic graph, one node per

variable
– Each node augmented with local

conditional probability tables
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Bayesian Belief Nets

• Nodes with no incoming arcs (root
nodes) simply have priors associated
with them

• Nodes with incoming arcs have tables
enumerating the
– P(Node|Conjunction of Parents)
– Where parent means the node at the

other end of the incoming arc
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Bayesian Belief Nets:
Semantics

• The full joint distribution for the N
variables in a Belief Net can be recovered
from the information in the tables.
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Alarm Example
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Alarm Example

• P(J^M^A^~B^~E)=

P(J|A)*P(M|A)*P(A|~B^~E)*P(~B)*P(~E)
0.9     * 0.7     * .001            * .999  * .998

• In other words, the probability of atomic
events can be read right off the network as
the product of the probability of the entries
for each variable
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Events

• P(M ^J^E^B^A)+
   P(M^J^E^B^~A)+
   P(M^J^E^~B^A)+
   …
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Chain Rule Basis

P(B,E,A,J,M)
P(M|B,E,A,J)P(B,E,A,J)

P(J|B,E,A)P(B,E,A)

P(A|B,E)P(B,E)

           P(B|E)P(E)
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Chain Rule Basis

• P(B,E,A,J,M)
• P(M|B,E,A,J)P(J|B,E,A)P(A|B,E)P(B|E)P(E)
• P(M|A)         P(J|A)      P(A|B,E)P(B)P(E)
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Alarm Example
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Details

• Where do the graphs come from?
– Initially, the intuitions of domain experts

• Where do the numbers come from?
– Hopefully, from hard data
– Sometimes from experts intuitions

• How can we compute things efficiently?
– Exactly by not redoing things unnecessarily
– By approximating things
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Computing with BBNs

• Normal scenario
– You have a belief net consisting of a bunch

of variables
• Some of which you know to be true (evidence)
• Some of which you’re asking about (query)
• Some you haven’t specified (hidden)
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Example

• Probability that there’s a burglary
given that John and Mary are calling

• P(B|J,M)
– B is the query variable
– J and M are evidence variables
– A and E are hidden variables
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Example

• Probability that there’s a burglary given
that John and Mary are calling

• P(B|J,M) = alpha P(B,J,M)
                  = alpha *
                         P(B,J,M,A,E) +
                         P(B,J,M,~A,E)+
                         P(B,J,M,A,~E)+
                         P(B,J,M, ~A,~E)
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From the Network
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Expression Tree
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Speedups

• Don’t recompute things.
– Dynamic programming

• Don’t compute somethings at all
– Ignore variables that can’t effect the

outcome.
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Example

• John calls given
burglary

• P(J|B)
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Variable Elimination

• Every variable that is not an ancestor
of a query variable or an evidence
variable is irrelevant to the query
– Operationally…

• You can eliminate leaf node that isn’t a query
or evidence variable

• That may produce new leaves. Keep going.
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Alarm Example
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Break

• Questions?
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Chain Rule Basis
P(B,E,A,J,M)
P(M|B,E,A,J)P(B,E,A,J)

P(J|B,E,A)P(B,E,A)

P(A|B,E)P(B,E)

           P(B|E)P(E)
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Chain Rule
P(E1,E2,E3,E4,E5)
P(E5|E1,E2,E3,E4)P(E1,E2,E3,E4)

P(E4|E1,E2,E3)P(E1,E2,E3)

P(E3|E1,E2)P(E1,E2)

           P(E2|E1)P(E1)
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Chain Rule

Rewriting that’s just
P(E1)P(E2|E1)P(E3|E1,E2)P(E4|E1,E2,E3)P(E5|E1,E2,E3,E4)

The probability of a sequence of events is just the product
of the conditional probability of each event given it’s
predecessors (parents/causes in belief net terms).
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Markov Assumption

• This is just a sequence based
independence assumption just like
with belief nets.
– Not all the parents matter

• Remember P(toothache|catch, cavity)=
                  P(toothache|cavity)

• Now P(Event_N|Event1 to Event_N-1)=
P(Event_N|Event_N-1+K to Event_N-1)
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First Order Markov
Assumption

P(E1)P(E2|E1)P(E3|E1,E2)P(E4|E1,E2,E3)P(E5|E1,E2,E3,E4)

P(E1)P(E2|E1)P(E3|E2)P(E4|E3)P(E5|E4)
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Markov Models

• As with all our models, let’s assume
some fixed inventory of possible
events that can occur in time

• Let’s assume for now that any given
point in time, all events are possible,
although not equally likely
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Markov Models

• You can view simple Markov assumptions as
arising from underlying probabilistic state
machines.

• In the simplest case (first order), events
correspond to states and the probabilities are
governed by probabilities on the transitions in
the machine.
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Weather

• Let’s say we’re tracking the weather
and there are 4 possible events (each
day, only one per day)
– Sun, clouds, rain, snow
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Example
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Belief Net Version
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Example

• In this case we need a 4x4 matrix of
transition probabilities.
– For example P(Rain|Cloudy) or

P(Sunny|Sunny) etc
• And we need a set of initial

probabilities P(Rain). That’s just an
array of 4 numbers.
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Example

• So to get the probability of a sequence
like
– Rain rain rain snow
– You just march through the state machine
– P(Rain)P(rain|rain)P(rain|rain)P(snow|rain)
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Belief Net Version
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Example

• Say that I tell you that
– Rain rain rain snow has happened
– How would you answer

• What’s the most likely thing to happen next?
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Belief Net Version
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Weird Example

• What if you couldn’t actually see the
weather?
– You’re a security guard who lives and

works in a secure facility underground.
– You watch people coming and going with

various things (snow boots, umbrellas, ice
cream cones)

– Can you figure out the weather?
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Hidden Markov Models
• Add an output to the states. I.e. when a

state is entered it outputs a symbol.
• You can view the outputs, but not the

states directly.
– States can output different symbols at

different times
– Same symbol can come from many states.
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Hidden Markov Models

• The point
– The observable sequence of symbols does not

uniquely determine a sequence of states.
• Can we nevertheless reason about the

underlying model, given the observations?
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Hidden Markov Model
Assumptions

• Now we’re going to make two
independence assumptions
– The state we’re in depends probabilistically

only on the state we were last in (first
order Markov assumpution)

– The symbol we’re seeing only depends
probabilistically on the state we’re in
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Hidden Markov Models

• Now the model needs
– The initial state priors

• P(Statei)
– The transition probabilities (as before)

• P(Statej|Statek)
– The output probabilities

• P(Observationi|Statek)
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HMMs

• The joint probability of a state sequence
and an observation sequence is…
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Noisy Channel Applications

• The hidden model represents an
original signal (sequence of words,
letters, etc)

• This signal is corrupted
probabilistically. Use an HMM to
recover the original signal

• Speech, OCR, language translation,
spelling correction,…
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Three Problems
• The probability of an observation sequence given a

model
– Forward algorithm
– Prediction falls out from this

• The most likely path through a model given an
observed sequence
– Viterbi algorithm
– Sometimes called decoding

• Finding the most likely model (parameters) given
an observed sequence
– EM Algorithm


