CSCI 5582 Artificial Intelligence
 Lecture 15
 Jim Martin

Today 10/19

- Review
- Belief Net Computing
- Sequential Belief Nets

Review

- Normalization
- Belief Net Semantics

Normalization

- What do I know about $P(\sim A \mid$ something $)$ and $P(A \mid$ same something $)$

They sum to 1

Normalization

- What if I have this...
$P(A, Y) / P(Y)$ and $P(\sim A, Y) / P(Y)$
And I can compute the numerators but not the demoninator?
Ignore it and compute what you have, then normalize
$P(A \mid Y)=P(A, Y) /(P(A, Y)+P(\sim A, Y))$
$P(\sim A \mid Y)=P(\sim A, Y) /(P(A, Y)+P(\sim A, Y))$

Bayesian Belief Nets

- A compact notation for representing conditional independence assumptions and hence a compact way of representing a joint distribution.
- Syntax:
- A directed acyclic graph, one node per variable
- Each node augmented with local conditional probability tables

Bayesian Belief Nets

- Nodes with no incoming arcs (roo \dagger nodes) simply have priors associated with them
- Nodes with incoming arcs have tables enumerating the
- P(Node|Conjunction of Parents)
- Where parent means the node at the other end of the incoming arc

Bayesian Belief Nets: Semantics

- The full joint distribution for the N variables in a Belief Net can be recovered from the information in the tables.

$$
P(X 1, \ldots X N)=\prod_{i=1}^{N} P(X i \mid \text { Parents }(X i))
$$

Alarm Example

- $P\left(J^{\wedge} M^{\wedge} A^{\wedge} \sim B^{\wedge} \sim E\right)=$
$P(J \mid A)^{\star} P(M \mid A) \star P\left(A \mid \sim B^{\wedge} \sim E\right)^{\star} P(\sim B) \star P(\sim E)$
0.9 * 0.7 *. 001 *. 999 *. 998
- In other words, the probability of atomic events can be read right off the network as the product of the probability of the entries for each variable

Events

- $P\left(M^{\wedge} J^{\wedge} E^{\wedge} B^{\wedge} A\right)+$
$P\left(M^{\wedge} J^{\wedge} E^{\wedge} B^{\wedge} \sim A\right)+$
$P\left(M^{\wedge} J^{\wedge} E^{\wedge} \sim B^{\wedge} A\right)+$

Chain Rule Basis

$P(B, E, A, J, M)$
$P(M \mid B, E, A, J) P(B, E, A, J)$

$$
P(\underbrace{P(A \mid B, E, A) P \underbrace{P(B, E, A)}_{P(B \mid E) P(E)}}
$$

Chain Rule Basis

- $P(B, E, A, J, M)$
- $P(M \mid B, E, A, J) P(J \mid B, E, A) P(A \mid B, E) P(B \mid E) P(E)$
- $P(M \mid A) \quad P(J \mid A) \quad P(A \mid B, E) P(B) P(E)$

Details

-Where do the graphs come from?

- Initially, the intuitions of domain experts
-Where do the numbers come from?
- Hopefully, from hard data
- Sometimes from experts intuitions
- How can we compute things efficiently?
- Exactly by not redoing things unnecessarily
- By approximating things

Computing with BBNs

- Normal scenario
- You have a belief net consisting of a bunch of variables
- Some of which you know to be true (evidence)
- Some of which you're asking about (query)
- Some you haven't specified (hidden)

Example

- Probability that there's a burglary given that John and Mary are calling
- $P(B \mid J, M)$
- B is the query variable
- J and M are evidence variables
- A and E are hidden variables

Example

- Probability that there's a burglary given that John and Mary are calling
- $P(B \mid J, M)=$ alpha $P(B, J, M)$

$$
=\text { alpha * }
$$

$$
P(B, J, M, A, E)+
$$

$$
P(B, J, M, \sim A, E)+
$$

$$
P(B, J, M, A, \sim E)+
$$

$$
P(B, J, M, \sim A, \sim E)
$$

Expression Tree

Speedups

- Don't recompute things.
- Dynamic programming
- Don't compute somethings at all
- Ignore variables that can't effect the outcome.

Example

- John calls given burglary
- $P(J \mid B)$

$$
\alpha P(B) \sum_{e} P(E) \sum_{a} P(A \mid B, E) P(J \mid a) \sum_{m} P(M \mid A)
$$

Variable Elimination

- Every variable that is not an ancestor of a query variable or an evidence variable is irrelevant to the query - Operationally...
- You can eliminate leaf node that isn't a query or evidence variable
- That may produce new leaves. Keep going.

Break

- Questions?

Chain Rule Basis

$$
P(B, E, A, J, M)
$$

$$
P(M \mid B, E, A, J) \underbrace{P(B, E, A, J})
$$

$$
P(J \mid B, E, A) P(B, E, A)
$$

Chain Rule

Rewriting that's just

$P(E 1) P(E 2 \mid E 1) P(E 3 \mid E 1, E 2) P(E 4 \mid E 1, E 2, E 3) P(E 5 \mid E 1, E 2, E 3, E 4)$
The probability of a sequence of events is just the product of the conditional probability of each event given it's predecessors (parents/causes in belief net terms).

Markov Assumption

- This is just a sequence based independence assumption just like with belief nets.
- Not all the parents matter
- Remember P(toothache|catch, cavity)= P(toothachelcavity)
- Now P(Event_N|Event1 to Event_N-1)=
$P($ Event_N IEvent_N-1+K to Event_N-1)

Markov Models

- As with all our models, let's assume some fixed inventory of possible events that can occur in time
- Let's assume for now that any given point in time, all events are possible, although not equally likely

Markov Models

- You can view simple Markov assumptions as arising from underlying probabilistic state machines.
- In the simplest case (first order), events correspond to states and the probabilities are governed by probabilities on the transitions in the machine.

Weather

- Let's say we're tracking the weather and there are 4 possible events (each day, only one per day)
- Sun, clouds, rain, snow

Example

- In this case we need a 4×4 matrix of transition probabilities.
- For example P(Rain|Cloudy) or P (SunnylSunny) etc
- And we need a set of initial probabilities P(Rain). That's just an array of 4 numbers.

Example

- So to get the probability of a sequence like
- Rain rain rain snow
- You just march through the state machine
- P(Rain)P(rain|rain)P(rain|rain)P(snow|rain)

Example

- Say that I tell you that

- Rain rain rain snow has happened
- How would you answer
- What's the most likely thing to happen next?

Weird Example

- What if you couldn't actually see the weather?
- You're a security guard who lives and works in a secure facility underground.
- You watch people coming and going with various things (snow boots, umbrellas, ice cream cones)
- Can you figure out the weather?

Hidden Markov Models

- Add an output to the states. I.e. when a state is entered it outputs a symbol.
- You can view the outputs, but not the states directly.
- States can output different symbols at different times
- Same symbol can come from many states.

Hidden Markov Models

- The point
- The observable sequence of symbols does not uniquely determine a sequence of states.
- Can we nevertheless reason about the underlying model, given the observations?

Hidden Markov Model Assumptions

- Now we're going to make two independence assumptions
- The state we're in depends probabilistically only on the state we were last in (first order Markov assumpution)
- The symbol we're seeing only depends probabilistically on the state we're in

Hidden Markov Models

- Now the model needs
- The initial state priors

$$
\text { - P(State } \left.{ }_{i}\right)
$$

- The transition probabilities (as before)
- P(State ${ }_{j} \mid$ State $\left._{k}\right)$
- The output probabilities
- P(Observation ${ }_{i}$ State $_{k}$)

HMMs

- The joint probability of a state sequence and an observation sequence is...

$$
P\left(X_{0}, X_{1}, \ldots X_{t}, E_{1}, \ldots E_{t}\right)=P\left(X_{0}\right) \prod_{i=1}^{t} P\left(X_{i} \mid X_{i-1}\right) P\left(E_{i} \mid X_{i}\right)
$$

Noisy Channel Applications

- The hidden model represents an original signal (sequence of words, letters, etc)
- This signal is corrupted probabilistically. Use an HMM to recover the original signal
- Speech, OCR, language translation, spelling correction,...

Three Problems

- The probability of an observation sequence given a model
- Forward algorithm
- Prediction falls out from this
- The most likely path through a model given an observed sequence
- Viterbi algorithm
- Sometimes called decoding
- Finding the most likely model (parameters) given an observed sequence
- EM Algorithm

