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Today 10/17

• Review basics
• More on independence
• Break
• Bayesian Belief Nets
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Review

• Joint Distributions
• Atomic Events
• Independence assumptions
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Review: Joint Distribution

0.890.01Cavity False

0.060.04Cavity True
Toothache=FalseToothache=True

•Each cell represents a conjunction of the variables in
the model.
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Atomic Events

• The entries in the table represent
the probabilities of atomic events
– Events where the values of all the

variables are specified
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Independence

• Two variables A and B are
independent iff P(A|B) = P(A). In
other words, knowing B gives you no
information about B.

• Or P(A^B)=P(A|B)P(B)=P(A)P(B)
– I.e. Two coin tosses
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Mental Exercise

• With a fair coin which of the
following two sequences is more
likely?
– HHHHHTTTTT
– HTTHHHTHTT
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Conditional Independence

• Consider the dentist problem with 3
variables: cavity, toothache, catch

• If I have a cavity, then the chances
that there will be a catch is
independent of whether or not I have
a toothache as well. I.e.
– P(Catch|Cavity^Toothache)=

P(Catch|Cavity)



5

CSCI 5582 Fall 2006

Conditional Independence

• Remember that having the joint
distribution over N variables allows
you to answer all the questions
involving those variables.

• Exploiting conditional independence
allows us to represent the complete
joint distribution with fewer entries.
– I.e. Fewer than the 2N normally needed
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Conditional Independence

• P(Cavity,Catch,Toothache)
= P(Cavity)P(Catch,Toothache|Cavity)
=P(Cavity)P(Catch|Cavity)P(Toothache|Cavity)
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Conditional Independence

• P(Cavity,Catch,Toothache)
= P(Catch)P(Cavity,Toothache|Catch)
⇒Huh?
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Bayesian Belief Nets

• A compact notation for representing
conditional independence assumptions
and hence a compact way of
representing a joint distribution.

• Syntax:
– A directed acyclic graph, one node per

variable
– Each node augmented with local

conditional probability tables
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Bayesian Belief Nets

• Nodes with no incoming arcs (root
nodes) simply have priors associated
with them

• Nodes with incoming arcs have tables
enumerating the
– P(Node|Conjunction of Parents)
– Where parent means the node at the

other end of the incoming arc
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Alarm Example

• Variables: Burglar, MaryCalls,
JohnCalls, Earthquake, Alarm

• Network topology captures the
domain causality (conditional
independence assumptions).
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Alarm Example
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Bayesian Belief Nets:
Semantics

• The full joint distribution for the N
variables in a Belief Net can be recovered
from the information in the tables.

! 

P(X1,...XN) = P(Xi |Parents(Xi))
i=1

N

"
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Belief Net Semantics
Alarm Example

• What are the chances of John calls,
Mary calls, alarm is going off, no
burglary, no earthquake?
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Alarm Example
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Alarm Example

• P(J^M^A^~B^~E)=

P(J|A)*P(M|A)*P(A|~B^~E)*P(~B)*P(~E)
0.9     * 0.7     * .001            * .999  * .998

• In other words, the probability of atomic
events can be read right off the network as
the product of the probability of the entries
for each variable

CSCI 5582 Fall 2006

Events

• What about non-atomic events?
• Remember to partition. Any event can

be defined as a combination of other
more well-specified events.
   P(A) = P(A^B)+P(A^~B)

• So what’s the probability that Mary
calls out of the blue?
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Events

• P(M ^J^E^B^A)+
   P(M^J^E^B^~A)+
   P(M^J^E^~B^A)+
   …
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Events

• How about P(M|Alarm)?
– Trick question… that’s something we know

• How about P(M|Earthquake)?
– Not directly in the network
   rewrite as

P(M^Earthquake)/P(Earthquake)
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Simpler Examples

• Let’s say we have two variables A and B,
and we know B influences A.

• What’s P(A^B)?
B

A

P(B)

P(A|B)

P(A|~B)
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Simple Example

• Now I tell you that B has happened.
• What’s you belief in A?

B

A

P(B)

P(A|B)

P(A|~B)
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Simple Example

• Suppose instead I say A has happened
• What’s you belief in B?

B

A

P(B)

P(A|B)

P(A|~B)
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Simple Example

• P(B|A)=P(B^A)/P(A)
              = P(B^A)/P(A^B)+P(A^~B)

=P(B)P(A|B)
       P(B)P(A|B)+P(~B)P(A|~B)
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Chain Rule Basis
P(B,E,A,J,M)
P(M|B,E,A,J)P(B,E,A,J)

P(J|B,E,A)P(B,E,A)

P(A|B,E)P(B,E)

           P(B|E)P(E)
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Chain Rule Basis

• P(B,E,A,J,M)
• P(M|B,E,A,J)P(J|B,E,A)P(A|B,E)P(B|E)P(E)
• P(M|A)         P(J|A)      P(A|B,E)P(B)P(E)
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Alarm Example

CSCI 5582 Fall 2006

Details

• Where do the graphs come from?
– Initially, the intuitions of domain experts

• Where do the numbers come from?
– Hopefully, from hard data
– Sometimes from experts intuitions

• How can we compute things efficiently?
– Exactly by not redoing things unnecessarily
– By approximating things
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Break

• Readings for probability
– 13: All
– 14:

• 492-498, 500, Sec 14.4
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Noisy-Or
• Even with the reduction in the number

of probabilities needed it’s hard to
accumulate all the numbers you need.

• Especially true when some evidence
variables are shared among many
causes.

• The Noisy-Or hack is a useful short-
cut.

• P(A|C1^C2^C3)
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Noisy-Or

Cold Flu Malaria

Fever
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Noisy Or

• P(Fever|Cold)
• P(Fever|Malaria)
• P(Fever|Flu)

• P(~Fever|Cold)
• P(~Fever|Malaria)
• P(~Fever|Flu)
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Noisy Or

• What does it mean for the        to
occur?

• It means the cause was true and the
symptom didn’t happen

• What’s the probability of that?
– P(~Fever|Cause)

• P(~Fever|Flu), etc
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Noisy Or

• If all three causes are true and you don’t
have a fever then all three blockers
are in effect

• What’s the probability of that?
– P(~Fever|flu,cold,malaria)
– P(~Fever|flu)P(~Fever|cold)P(~Fever|malaria)

• But 1 – that = P(Fever|causes)
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Computing with BBNs

• Normal scenario
– You have a belief net consisting of a bunch

of variables
• Some of which you know to be true (evidence)
• Some of which you’re asking about (query)
• Some you haven’t specified (hidden)
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Example

• Probability that there’s a burglary
given that John and Mary are calling

• P(B|J,M)
– B is the query variable
– J and M are evidence variables
– A and E are hidden variables
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Example
• Probability that there’s a burglary given that John

and Mary are calling
• P(B|J,M) = alpha P(B,J,M)
                  = alpha *
                         P(B,J,M,A,E) +
                         P(B,J,M,~A,E)+
                         P(B,J,M,A,~E)+
                         P(B,J,M, ~A,~E)
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From the Network

! !e a
AMPAJPEBAPEPBP )|()|(),|()()("

! !e a
AMPAJPEBAPEPBP )|()|(),|()()("
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Expression Tree
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Speedups

• Don’t recompute things.
– Dynamic programming

• Don’t compute some things at all
– Ignore variables that can’t effect the

outcome.
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Example

• John calls given
burglary

• P(J|B)

! ! !e a m
AMPaJPEBAPEPBP )|()|(),|()()("
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Variable Elimination

• Every variable that is not an ancestor
of a query variable or an evidence
variable is irrelevant to the query
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Next Time

• Finish Chapters 13 and 14


