CSCI 5582 Artificial Intelligence
 Lecture 14
 Jim Martin

Today 10/17

- Review basics
- More on independence
- Break
- Bayesian Belief Nets

Review

- Joint Distributions
- Atomic Events
- Independence assumptions

Atomic Events

- The entries in the table represent the probabilities of atomic events
- Events where the values of all the variables are specified

Independence

- Two variables A and B are independent iff $P(A \mid B)=P(A)$. In other words, knowing B gives you no information about B.
- $\operatorname{Or} P\left(A^{\wedge} B\right)=P(A \mid B) P(B)=P(A) P(B)$
- I.e. Two coin tosses

Mental Exercise

- With a fair coin which of the following two sequences is more likely?
- HHHHHTTTTT
- HTTHHHTHTT

Conditional Independence

- Consider the dentist problem with 3 variables: cavity, toothache, catch
- If I have a cavity, then the chances that there will be a catch is independent of whether or not I have a toothache as well. I.e.
- $P\left(\right.$ Catch \mid Cavity ${ }^{\wedge}$ Toothache $)=$ P(Catch|Cavity)

Conditional Independence

- Remember that having the joint distribution over N variables allows you to answer all the questions involving those variables.
- Exploiting conditional independence allows us to represent the complete joint distribution with fewer entries.
- I.e. Fewer than the 2^{N} normally needed

Conditional Independence

- P(Cavity,Catch,Toothache)
= P(Cavity)P(Catch,Toothache|Cavity)
=P(Cavity)P(Catch|Cavity)P(Toothache|Cavity)

Conditional Independence

- P(Cavity,Catch,Toothache)
$=P($ Catch $) P($ Cavity, Toothache|Catch $)$
\Rightarrow Huh?

Bayesian Belief Nets

- A compact notation for representing conditional independence assumptions and hence a compact way of representing a joint distribution.
- Syntax:
- A directed acyclic graph, one node per variable
- Each node augmented with local conditional probability tables

Bayesian Belief Nets

- Nodes with no incoming arcs (root nodes) simply have priors associated with them
- Nodes with incoming arcs have tables enumerating the
- P(Node|Conjunction of Parents)
- Where parent means the node at the other end of the incoming arc

Alarm Example

- Variables: Burglar, MaryCalls, JohnCalls, Earthquake, Alarm
- Network topology captures the domain causality (conditional independence assumptions).

Bayesian Belief Nets: Semantics

- The full joint distribution for the N variables in a Belief Net can be recovered from the information in the tables.

$$
P\left(X_{1}, \ldots X_{N}\right)=\prod_{i=1}^{N} P(X i \mid \operatorname{Parents}(X i))
$$

Belief Net Semantics Alarm Example
 - What are the chances of John calls, Mary calls, alarm is going off, no burglary, no earthquake?

Alarm Example

- $P\left(J^{\wedge} M^{\wedge} A^{\wedge} \sim B^{\wedge} \sim E\right)=$

```
P(J|A)*P(M|A)*P(A|~B^~E)*P(~B)*P(~E)
0.9 * 0.7 * . 001 * . }999 * . .998
```

- In other words, the probability of atomic events can be read right off the network as the product of the probability of the entries for each variable

Events

- What about non-atomic events?
- Remember to partition. Any event can be defined as a combination of other more well-specified events.

$$
P(A)=P\left(A^{\wedge} B\right)+P\left(A^{\wedge} \sim B\right)
$$

- So what's the probability that Mary calls out of the blue?

Events

- $P\left(M^{\wedge} J^{\wedge} E^{\wedge} B^{\wedge} A\right)+$ $P\left(M^{\wedge} J^{\wedge} E^{\wedge} B^{\wedge} \sim A\right)+$ $P\left(M^{\wedge} J^{\wedge} E^{\wedge} \sim B^{\wedge} A\right)+$

Events

- How about $P(M \mid$ Alarm $)$?
- Trick question... that's something we know
- How about $P(M \mid E a r t h q u a k e)$?
- Not directly in the network rewrite as $P\left(M^{\wedge}\right.$ Earthquake)/P(Earthquake)

Simpler Examples

- Let's say we have two variables A and B, and we know B influences A.
- What's $P\left(A^{\wedge} B\right)$?

Simple Example

- Suppose instead I say A has happened
- What's you belief in B?

Chain Rule Basis

- $P(B, E, A, J, M)$
- $P(M \mid B, E, A, J) P(J \mid B, E, A) P(A \mid B, E) P(B \mid E) P(E)$
- $P(M \mid A) \quad P(J \mid A) \quad P(A \mid B, E) P(B) P(E)$

Details

-Where do the graphs come from?

- Initially, the intuitions of domain experts
-Where do the numbers come from?
- Hopefully, from hard data
- Sometimes from experts intuitions
- How can we compute things efficiently?
- Exactly by not redoing things unnecessarily
- By approximating things

Break

- Readings for probability
- 13: All
- 14:
-492-498, 500, Sec 14.4

Noisy-Or

- Even with the reduction in the number of probabilities needed it's hard to accumulate all the numbers you need.
- Especially true when some evidence variables are shared among many causes.
- The Noisy-Or hack is a useful shortcut.
- $\mathrm{P}\left(\mathrm{A} \mid C 1^{\wedge} C 2^{\wedge} C 3\right)$

Noisy Or

- P(FeverlCold)
- P(~FeverlCold)
- P(Fever|Malaria)
- P(~Fever|Malaria)
- $P($ Fever $\mid F l u)$
- P(\sim Fever|Flu)

Noisy Or

- What does it mean for the Q to occur?
- It means the cause was true and the symptom didn't happen
- What's the probability of that?
- P(~Fever|Cause)
- P(~Fever|Flu), etc

Noisy Or

- If all three causes are true and you don't have a fever then all three blockers are in effect
- What's the probability of that?
- P(~Fever|flu,cold,malaria)
- P(~Fever|flu)P(~Fever|cold)P(~Fever|malaria)
- But 1 - that $=P($ Fever \mid causes $)$

Computing with BBNs

- Normal scenario
- You have a belief net consisting of a bunch of variables
- Some of which you know to be true (evidence)
- Some of which you're asking about (query)
- Some you haven't specified (hidden)

Example

- Probability that there's a burglary given that John and Mary are calling
- $P(B \mid J, M)$
- B is the query variable
- J and M are evidence variables
- A and E are hidden variables

Example

- Probability that there's a burglary given that John and Mary are calling
- $P(B \mid J, M)=$ alpha $P(B, J, M)$

$$
=\text { alpha * }
$$

$P(B, J, M, A, E)+$
$P(B, J, M, \sim A, E)+$
$P(B, J, M, A, \sim E)+$
$P(B, J, M, \sim A, \sim E)$

Expression Tree

Speedups

- Don't recompute things.
- Dynamic programming
- Don't compute some things at all
- Ignore variables that can't effect the outcome.

Example

- John calls given burglary
- $P(J \mid B)$

$$
\alpha P(B) \sum_{e} P(E) \sum_{a} P(A \mid B, E) P(J \mid a) \sum_{m} P(M \mid A)
$$

Variable Elimination

- Every variable that is not an ancestor of a query variable or an evidence variable is irrelevant to the query

Next Time

- Finish Chapters 13 and 14

CSCI 5582 Fall 2006

