CSCI 5582 Artificial Intelligence
 Lecture 12
 Jim Martin

Today 10/12

- Review
- Basic probability
- Break
- Belief Networks

Review

- Where we are...
- Agents can use search to find useful actions based on looking into the future
- Agents can use logic to complement search to represent and reason about
- Unseen parts of the current environment
- Past environments
- Future environments
- And they can play a mean game of chess

Where we aren' \dagger

- Agents can' \dagger

- Deal well with uncertain situations (not clear people are all that great at this)
- Learn
- See, speak, hear, move, or feel

Exercise

- You go to the doctor and for insurance reasons they perform a test for a horrible disease
- You test positive
- The doctor says the test is 99% accurate
- Do you worry?

An Exercise

- It depends; let's say...
- The disease occurs 1 in 10000 folks
- And that the 99% means that 99 times out a 100 when you give the test to someone without the disease it will return negative
- And that when you have the disease it always says you are positive
- Do you worry?

An Exercise

- The test's false positive rate is $1 / 100$
- Only $1 / 10000$ people have the disease
- If you gave the test to 10000 random people you would have
- 100 false positives
- 1 true positive
- Do you worry?

An Exercise

- Do you worry?
- Yes, I always worry
- Yes, my chances of having the disease are $100 x$ they were before I went to the doctor
- Went from $1 / 10000$ to $1 / 100$ (approx)
- No, I live with a lot of other $1 / 100$ bad things without worrying

Another Example

- You hear on the news...
- People who attend grad school to get a masters degree have a $10 x$ increased chance of contracting schistosomiasis
- Do you worry?
- Depends on where you go to grad school

Back to Basics

- Prior (or unconditional) probability
- Written as P(A)
- For now think of A as a proposition that can turn out to be True or False
$-P(A)$ is your belief that A is true given that you know nothing else relevant to A

Also

- Just as with logic we can create complex sentences with a partially compositional semantics (sort of)...
$P(A \wedge B), P(A \vee B), P(\neg A \vee B) \ldots$

Basics

- Conditional (or posterior) probabilities
- Written as $P(A \mid B)$
- Pronounced as the probability of A given B
- Think of it as your belief in A given that you know absolutely that B is true.

And

- $P(A \mid B)$... your belief in A given that you know B is true
- AND B is all you know that is relevant to A

Conditionals Defined

- Conditionals

$$
P(A \mid B)=\frac{P\left(A^{\wedge} B\right)}{P(B)}
$$

- Rearranging

$$
P\left(A^{\wedge} B\right)=P(A \mid B) P(B)
$$

- And also

$$
P\left(A^{\wedge} B\right)=P(B \mid A) P(A)
$$

Conditionals Defined

CSCI 5582 Fall 2006

Inference

- Inference means updating your beliefs as evidence comes in
- $P(A)$... belief in A given that you know nothing else of relevance
- $P(A \mid B)$... belief in A once you know B and nothing else relevant
- $P\left(A \mid B^{\wedge} C\right)$ belief in A once you know B and C and nothing else relevant

Also

- What you'd expect... we can have $P\left(A \mid B^{\wedge} C\right)$ or $P\left(A^{\wedge} D \mid E\right)$ or $P\left(A^{\wedge} B \mid C^{\wedge} D\right)$ etc...

Joint Semantics

- Joint probability distribution... the equivalent of truth tables in logic
- Given a complete truth table you can answer any question you want
- Given the joint probability distribution over N variables you can answer any question you might want to that involve those variables

Joint Semantics

- With logic you don't always need the whole truth table; you can use inference methods and compositional semantics
- I.e if I know the truth values for A and B, I can retrieve the value of $A^{\wedge} B$
- With probability, you need the joint to do inference unless you're willing to make some assumptions

Joint

	Toothache=True	Toothache=False
Cavity = True	0.04	0.06
Cavity = False	0.01	0.89

-What's the probability of having a cavity and a toothache?
-What's the probability of having a toothache?
-What's the probability of not having a cavity?
-What's the probability of having a toothache or a cavity?

Note

- Adding up across a row is really a form of reasoning by cases...
- Consider calculating P(Cavity)...
- We know that in this world you either have a toothache or you don't. I.e toothaches partition the world.
- So...

$$
\begin{gathered}
\text { Partitioning } \\
\begin{aligned}
& P(\text { Cavity })=P(\text { Cavity } \wedge \text { Toothache }) \\
&+P(\text { Cavity } \\
& \wedge \\
&\text { Toothache })
\end{aligned}
\end{gathered}
$$

Combining Evidence

- Suppose you know the values for
$-P(A \mid B)=0.2$
$-P(A \mid C)=0.05$
- Then you learn B is true
- What's your belief in A ?
- Then you learn C is true
- What's your belief in A ?

Details...

- Where do all the numbers come from?
- Mostly counting
- Sometimes theory
- Sometimes guessing
- Sometimes all of the above

Break

- HW Questions?

Bayes

- We know..

$$
P(A \wedge B)=P(A \mid B) P(B)
$$

and

$$
P(A \wedge B)=P(B \mid A) P(A)
$$

- So rearranging things

$$
P(A \mid B) P(B)=P(B \mid A) P(A)
$$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Bayes

- Memorize this

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Bayesian Diagnosis

- Given a set of symptoms choose the best disease (the disease most likely to give rise to those symptoms)
- I.e. Choose the disease the gives the highest

P(Disease|Symptoms) for all possible diseases

- But you probably can't assess that...
- So maximize this...
$P($ Disease \mid Symptoms $)=\frac{P(\text { Symptoms } \mid \text { Disease }) P(\text { Disease })}{P(\text { Symptoms })}$

Meningitis

$$
\begin{aligned}
& P(S \mid M)=0.5 \\
& P(M)=0.00002 \\
& P(S)=0.05 \\
& \quad \text { so... } \\
& P(M \mid S)=\frac{P(S \mid M) P(M)}{P(S)} \\
& \quad=\frac{0.5 * 0.00002}{0.05} \\
& \quad=0.0002
\end{aligned}
$$

Differential Diagnosis

- Why on earth would anyone know $P(S)$?
- And do you need to know it?
- Asking for the most probable disease given some symptoms doesn't entail knowing the probability of the diseases. Argmax ${ }_{D} P(D \mid S)=P(S \mid D) P(D) / P(S)$ is the same as
Argmax $_{D} P(D \mid S)=P(S \mid D) P(D)$

Well

- What if you needed the exact probability

$$
\begin{aligned}
P(S) & =P\left(S^{\wedge} M\right)+P\left(S^{\wedge} \neg M\right) \\
& =P(S \mid M) P(M)+P(S \mid \neg M) P(\neg M)
\end{aligned}
$$

Next Time

- Graphical models or Belief Nets

- Chapter 14
- Quiz is postponed 1 Week
- Now on 10/26
- Covers 7, 8, 9, 13 and 14

