
1

CSCI 5582 Fall 2006

CSCI 5582
Artificial Intelligence

Lecture 11
Jim Martin

CSCI 5582 Fall 2006

Today 10/5

• First Order Logic
– Also called First Order Predicate Calculus

• Break
• New HW

CSCI 5582 Fall 2006

Clarification

Implies TT

TFF

TTF

FFT

TTT
A->BBA

2

CSCI 5582 Fall 2006

Clarification

Implies TT ----> Rewrite

TFF

TTF

FFT

TTT
A->BBA

TFF

TTF

FFT

TTT
~A or BBA

CSCI 5582 Fall 2006

Clarification

Implies TT ----> Rewrite

TFF

TTF

FFT

TTT
A->BBA

FFF

TTF

TFT

TTT
A or BBA

CSCI 5582 Fall 2006

Pros and Cons of Propositional
Logic

 Propositional logic is declarative
 Propositional logic allows partial/disjunctive/negated

information
– (unlike most data structures and databases)

 Propositional logic is compositional:
– meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1

and of P1,2
 Meaning in propositional logic is context-independent

– (unlike natural language, where meaning depends on
context)

 Propositional logic has very limited expressive power
– (unlike natural language)
– E.g., cannot say "pits cause breezes in adjacent

squares“
• except by writing one sentence for each square

3

CSCI 5582 Fall 2006

First Order Logic

• At a high level…
– FOL allows you to represent objects,

properties of objects, and relations
among objects

– Specific domains are modeled by
developing knowledge-bases that capture
the important parts of the domain
(change, auto repair, medicine, time, set
theory, etc)

CSCI 5582 Fall 2006

First-order logic
• Whereas propositional logic assumes the world

contains facts (that are true or false)
• First-order logic (like natural language) assumes

the world contains
– Objects: people, houses, numbers, colors, baseball

games, wars, …
– Relations: red, round, prime, brother of, bigger than,

part of, comes between, …
– Functions: father of, best friend, one more than, plus,

…

CSCI 5582 Fall 2006

Syntax of FOL
• Constants KingJohn, TheEmpireStateBldg,...
• Predicates Brother, Near, Loves,...
• Functions Sqrt, LeftLegOf,...
• Variables x, y, a, b,...
• Connectives ¬, ⇒, ∧, ∨, ⇔
• Equality =
• Quantifiers ∀, ∃

4

CSCI 5582 Fall 2006

Atomic sentences
Atomic sentence = predicate (term1,...,termn)

or term1 = term2

Term = function (term1,...,termn)
or constant or variable

• E.g.,
– Brother(KingJohn, RichardTheLionheart)
– > (Length(LeftLegOf(Richard)),

Length(LeftLegOf(KingJohn)))

CSCI 5582 Fall 2006

Complex sentences
• Complex sentences are made from atomic

sentences using connectives
¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2,

E.g.
Sibling(KingJohn,Richard) ⇒

Sibling(Richard,KingJohn)

CSCI 5582 Fall 2006

Truth in first-order logic
• Sentences are true with respect to a model and an

interpretation

• Models contain objects (domain elements) and relations
among them

• Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate.

5

CSCI 5582 Fall 2006

Models for FOL: Example

CSCI 5582 Fall 2006

Models as Sets
• Let’s populate a domain:

– {R, J, RLL, JLL, C}
• Property Predicates

– Person = {R, J}
– Crown = {C}
– King = {J}

• Relational Predicates
– Brother = { <R,J>, <J,R>}
– OnHead = {<C,J>}

• Functional Predicates
– LeftLeg = {<R, RLL>, <J, JLL>}

CSCI 5582 Fall 2006

Quantifiers

• Allow us to express properties of collections
of objects instead of enumerating objects by
name

• Universal: “for all” ∀
• Existential: “there exists” ∃

6

CSCI 5582 Fall 2006

Universal quantification
∀<variables> <sentence>

Everyone at CU is smart:
∀x At(x, CU) ⇒ Smart(x)

∀x P is true in a model m iff P is true with x being each possible
object in the model

Roughly speaking, equivalent to the conjunction of
instantiations of P

At(KingJohn,CU) ⇒ Smart(KingJohn)
∧At(Richard,CU) ⇒ Smart(Richard)
∧At(Ralphie,CU) ⇒ Smart(Ralphie)
∧ ...

CSCI 5582 Fall 2006

Existential quantification
∃<variables> <sentence>

Someone at CU is smart:
∃x At(x, CU) ∧ Smart(x)

∃x P is true in a model m iff P is true with x being some possible object
in the model

• Roughly speaking, equivalent to the disjunction of instantiations of
P

At(KingJohn,CU) ∧ Smart(KingJohn)
∨ At(Richard,CU) ∧ Smart(Richard)
∨ At(Ralphie, CU) ∧ Smart(VUB)
∨ ...

CSCI 5582 Fall 2006

Properties of quantifiers
∀x ∀y is the same as ∀y ∀x
∃x ∃y is the same as ∃y ∃x

∃x ∀y is not the same as ∀y ∃x
∃x ∀y Loves(x,y)

– “There is a person who loves everyone in the world”
∀y ∃x Loves(x,y)

– “Everyone in the world is loved by at least one person”

• Quantifier duality: each can be expressed using the other
∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

7

CSCI 5582 Fall 2006

Reasoning

• We can do all the same reasoning with FOL
that we did with Prop logic
– Compositional Semantics
– Model-Based Reasoning
– Chaining (Forward/Backward)
– Resolution

• But the presence of variables and
quantifiers makes things more complicated

CSCI 5582 Fall 2006

Variables

• A big part of reasoning with FOL involves
keeping track of all the variables while
reasoning.

• Substitution lists are the means used to track
the value, or binding, of variables as
processing proceeds.

CSCI 5582 Fall 2006

Examples

8

CSCI 5582 Fall 2006

Examples

CSCI 5582 Fall 2006

Inference

• Inference in FOL involves showing
that some sentence is true, given a
current knowledge-base, by exploiting
the semantics of FOL to create a new
knowledge-base that contains the
sentence in which we are interested.

CSCI 5582 Fall 2006

Inference Methods

• Proof as Generic Search
• Proof by Modus Ponens

– Forward Chaining
– Backward Chaining

• Resolution
• Model Checking

9

CSCI 5582 Fall 2006

Generic Search

• States are snapshots of the KB
• Operators are the rules of inference
• Goal test is finding the sentence

you’re seeking
– I.e. Goal states are KBs that contain the

sentence (or sentences) you’re seeking

CSCI 5582 Fall 2006

Example

• Harry is a hare
• Tom is a tortoise
• Hares outrun

tortoises

• Harry outruns
Tom?

CSCI 5582 Fall 2006

Tom and Harry

• And introduction

• Universal elimination

• Modus ponens

10

CSCI 5582 Fall 2006

What’s wrong?

• The branching factor caused by the
number of operators is huge

• It’s a blind (undirected) search

CSCI 5582 Fall 2006

So…

• So a reasonable method needs to
control the branching factor and find
a way to guide the search…

• Focus on the first one first

CSCI 5582 Fall 2006

Forward Chaining

• When a new fact p is added to the KB
– For each rule such that p unifies with

part of the premise
• If all the other premises are known
• Then add consequent to the KB

This is a data-driven method.

11

CSCI 5582 Fall 2006

Backward Chaining

• When a query q is asked
– If a matching q’ is found return

substitution list
– Else For each rule q’ whose consequent

matches q, attempt to prove each
antecedent by backward chaining

This is a goal-directed method. And it’s
the basis for Prolog.

CSCI 5582 Fall 2006

Backward Chaining

Is Tom faster than someone?

CSCI 5582 Fall 2006

Notes

• Backward chaining is not abduction;
we are not inferring antecedents
from consequents.

• The fact that you can’t prove
something by these methods doesn’t
mean its false. It just means you can’t
prove it.

12

CSCI 5582 Fall 2006

Resolution

• Modus ponens is not complete. I.e.
there are things we should be able to
prove true that we can’t by using
Modus ponens alone.

• Used appropriately, resolution is
complete.

CSCI 5582 Fall 2006

Resolution Example

CSCI 5582 Fall 2006

Resolution Example
Resolve 1 and 3

Resolve 2 and 5

Resolve 4 and 6

Convert to Normal Form

13

CSCI 5582 Fall 2006

Break

• New HW (Due 10/17)
1. Download and install python code for the logic

chapters from aima.cs.berkeley.edu
2. Encode the rules of Wumpus world in prop

logic
3. Debug and complete the WalkSat code in

logic.py
4. Apply WalkSat to answer satisfiability

questions that I pose about game situations

CSCI 5582 Fall 2006

Break

• Office Hours changed for today
– I’ll be in my office after class 1:00
– I’ll be back at 3:15 or so until 5.

CSCI 5582 Fall 2006

HW
• I’ll give you situations that look like this….

– ~S11, ~B11, B21, ~S21, P31
• This means that you know there’s no stench

in 1,1 and no breeze in 1,1 and a breeze in
2,1 and no stench in 2,1

• And I’m asking you if P31 is satisfiable.
– I’m asking if there could be a pit in 3,1

• You should return a satisfying model if
there is one, otherwise return false.

14

CSCI 5582 Fall 2006

HW

• The tricky part of this HW is that you
have to build a correct KB and get the
WalkSat code running at the same time.
– In debugging you may have a hard time

determining if your code is wrong or your KB is
wrong (or incomplete)

– You can use any of the other prop logic
inference routines in logic.py to help debug your
KB.

CSCI 5582 Fall 2006

The WalkSAT algorithm

CSCI 5582 Fall 2006

WalkSat
def WalkSAT(clauses, p=0.5, max_flips=10000):
 model = dict([(s, random.choice([True, False]))

 for s in prop_symbols(clauses)])
 for i in range(max_flips):

 satisfied, unsatisfied = [], []

 for clause in clauses:
 if_(pl_true(clause, model), satisfied, unsatisfied).append(clause)

 if not unsatisfied:
 return model

 clause = random.choice(unsatisfied)

 if probability(p):
 sym = random.choice(prop_symbols(clause))

 else:
 raise NotImplementedError

 model[sym] = not model[sym]

15

CSCI 5582 Fall 2006

Moving On…

• We’ll wrap up logic material on Tuesday
• And then start on Chapter 13

