

CSCI 5582 Fall 2006

Today 10/3

- Review Model Checking/Wumpus
- · CNF
- WalkSat
- Break
- Start on FOL

CSCI 5582 Fall 2006

Review

- Propositional logic provides
 - Propositions that have
 - Truth values and
 - Logical connectives that allow a
 - Compositional Semantics and
 - Inference

Models

- Models are formally structured worlds with respect to which truth can be evaluated.
- $\textit{m} \text{ is a model of a sentence } \alpha$ if α is true in m
- $M(\alpha)$ is the set of all models of α

Effective propositional inference

- Two families of efficient algorithms for propositional inference based on model checking:
- Are used for checking satisfiability
- Complete backtracking search algorithms
 - DPLL algorithm (Davis, Putnam, Logemann, Loveland)
 - Incomplete local search algorithms • WalkSAT algorithm

CSCI 5582 Fall 2006

Conversion to CNF

- $\mathsf{B}_{1,1} \ \Leftrightarrow \ (\mathsf{P}_{1,2} \ \lor \ \mathsf{P}_{2,1})$
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. - $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move ¬ inwards using de Morgan's rules and doublenegation:
 (¬B_{1,1} v P_{1,2} v P_{2,1}) ∧ ((¬P_{1,2} ∧ ¬P_{2,1}) v B_{1,1})
- Apply distributivity law (^ over v) and flatten:
 (¬B_{1,1} v P_{1,2} v P_{2,1}) ^ (¬P_{1,2} v B_{1,1}) ^ (¬P_{2,1} v B_{1,1})
 CSCI 5582 Fall 2006

The DPLL algorithm

- Determine if an input propositional logic sentence (in CNF) is satisfiable by assigning values to variables.
 - 1. Pure symbol heuristic Pure symbol: always appears with the same "sign" in all clauses. e.g., In the three clauses (A \vee -B), (-B \vee -C), (C \vee A), A and B are pure, C is impure. Assign a pure symbol so that their literals are true.
 - Unit clause heuristic Unit clause: only one literal in the clause or only one literal which has not yet received a value. The only literal in a unit clause must be true.

CSCI 5582 Fall 2006

The DPLL algorithm function DPLL'SATISTABLE?(s) returns true or false inputs: s, a swence in propositional logic address the st of clauses in the CNF representation of s system DPLL (clauses, symbols is s return DPLL (clauses, symbols, l)) function DPLL (clauses, symbols, model) returns true or false if some clause is true in model them return false p, value + FINS PURE SYMBOL (symbols, clauses, model) if some clause is true in model them return false p, value + FINS PURE SYMBOL (symbols, clauses, model p); p, value + FINS PURE SYMBOL (symbols, clauses, model); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (value); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]); p, value + FINS UNIT-CLAUSE (clauses, symbols-P, [P = value[model]);

CSCI 5582 Fall 2006

The WalkSAT algorithm

- Incomplete, local search algorithm.
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses.
- Steps are taken in the space of complete
- assignments, flipping the truth value of one variable at a time.
- Balance between greediness and randomness.
 To avoid local minima

CSCI 5582 Fall 2006

Break

• Quiz 1: Average was 43

CSCI 5582 Fall 2006

Pros and cons of propositional logic

- Propositional logic is declarative
 Propositional logic allows partial/disjunctive/negated information

 (unlike most data structures and databases)

- E.g., cannot say "pits cause breezes in adjacent squares"
 except by writing one sentence for each square

FOL

- At a high level...
 - FOL allows you to represent objects, properties of objects, and relations among objects
 - Specific domains are modeled by developing knowledge-bases that capture the important parts of the domain (change, auto repair, medicine, time, set theory, etc)

CSCI 5582 Fall 2006

FOL

- First order logic adds
 - Variables and quantifiers that allow
 - Statements about unknown objects and
 - Statements about classes of objects

CSCI 5582 Fall 2006

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, wars, ...
 Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus,

- Allows us to express properties of collections of objects instead of enumerating objects by name •
- Universal: "for all" ∀
- Existential: "there exists" 3

CSCI 5582 Fall 2006

Universal quantification

∀<variables> <sentence>

Everyone at CU is smart: $\forall x \ At(x, CU) \Rightarrow Smart(x)$

 $\forall x \ P \ is true in a model m \ iff \ P \ is true with x being each possible object in the model$

Roughly speaking, equivalent to the conjunction of instantiations of $\ensuremath{\textit{P}}$

At(KingJohn,CU) ⇒ Smart(KingJohn) ^ At(Richard,CU) ⇒ Smart(Richard) ^ At(Ralphie,CU) ⇒ Smart(Ralphie) ^ ...

CSCI 5582 Fall 2006

Existential quantification

3<variables> <sentence>

Someone at CU is smart: ∃x At(x, CU) ^ Smart(x)

 $\exists x \ P \ \text{is true}$ in a model $m \ \text{iff} \ P \ \text{is true}$ with $x \ \text{being some possible object}$ in the model

• Roughly speaking, equivalent to the disjunction of instantiations of P

- At(KingJohn,CU) ^ Smart(KingJohn)
 At(Richard,CU) ^ Smart(Richard)
 At(Ralphie, CU) ^ Smart(VUB)
 ...

Inference

• Inference in FOL involves showing that some sentence is true, given a current knowledge-base, by exploiting the semantics of FOL to create a new knowledge-base that contains the sentence in which we are interested.

CSCI 5582 Fall 2006

Inference Methods

- Proof as Generic Search
- Proof by Modus Ponens
 - Forward Chaining
 - Backward Chaining
- \cdot Resolution
- Model Checking

So...

- So a reasonable method needs to control the branching factor and find a way to guide the search...
- Focus on the first one first

CSCI 5582 Fall 2006

Forward Chaining

- When a new fact p is added to the KB
 - For each rule such that p unifies with
 - part of the premise
 - If all the other premises are known
 - Then add consequent to the KB

This is a data-driven method.

Backward Chaining

- When a query q is asked
 - If a matching q' is found return substitution list
 - Else For each rule q' whose consequent matches q, attempt to prove each antecedent by backward chaining

This is a goal-directed method. And it's the basis for Prolog.

CSCI 5582 Fall 2006

Notes

- Backward chaining is not abduction; we are not inferring antecedents from consequents.
- The fact that you can't prove something by these methods doesn't mean its false. It just means you can't prove it.

