

Seismic Event Detection from Volcanic Regions using Feature Extraction and Deep Learning

Tavishi Priyam¹, Elizabeth Bradley^{1,2}, Anne Sheehan³, Rey Koki¹

1. Department of Computer Science, University of Colorado Boulder, 2. Santa Fe Institute, 3. CIRES and Department of Geological Sciences, University of Colorado Boulder

37

67

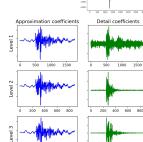
31

48

84

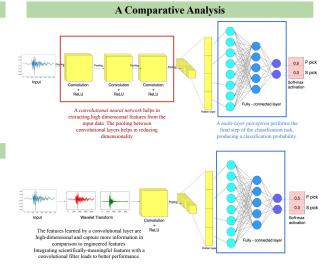
Background and Motivation

- ✤ Manual identification of the arrival times of P and S waves from seismometer data offers great precision but involves human bias and effort
- Deep-learning models can effectively automate this process. but they do not incorporate scientific knowledge, nor do they offer any understanding of the classification process
- ♦ By pre-processing the data into scientifically meaningful features and using them as input to deep-learning models, we hypothesize improved performance and understanding


Why Wavelet?

- Seismic events like earthquakes possess characteristic temporal signatures
- Templates [1] have been used to capture these signatures.
- ♦ Wavelets [2] are a good way to operationalize this for the purposes of feature engineering for ML methods.

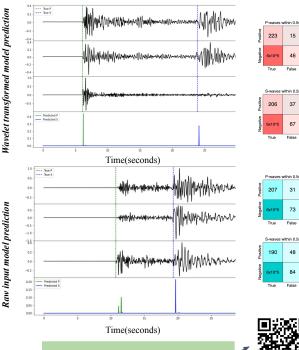
What a wavelet transform does!



The effect of this preprocessing step is not only to remove noise, ut also more clearly expose the behavior of interest.

[1] Dawei Mu, En-Jui Lee, Po Chen, Rapid earthquake detection through GPU-Based template matching, Computers & Geosciences, Volume 109, 2017, Pages 305-314, ISSN 0098-3004, https://doi.org/10.1016/j.cageo.2017.09.009. [2] Adhikari, B., Dahal, S., Karki, M. et al. Application of wavelet for seismic wave analysis in Kathmandu Valley after

the 2015 Gorkha earthquake, Nepal. Geoenviron Disasters 7, 2 (2020). https://doi.org/10.1186/s40677-019-0134-8


Details: One year of seismic data from the southern Taupo Volcanic Zone, New Zealand collected using a short-period seismometer with three component sensor aligned to North. Split into training and testing sets in a 70:30 ratio.

Future Work

- ♦ Explore more feature engineering mechanisms for the seismic waves such as continuous wavelet transform, fingerprints.
- Explore a neural network model that can retain memory such as Long Short Term Memory (LSTM).
- Build a model with the ability to classify the various kinds of earthquake events such as tremor and low-frequency earthquakes.

Results

- Model with featurized input exhibits better performance in terms of precision and proximity to the analyst-picked arrival times.
- ♦ Model with raw input is able to detect similar number of events but with lesser precision.

Scan the QR for more details!