Polynomial Regression and Regularization
Administrivia

- If you still haven’t enrolled in Moodle yet
 - Enrollment key on Piazza
 - If joined course recently, email me to get added to Piazza

- Homework 1 posted later tonight. Good Milestones:
 - Problems 1–3 This Week
 - Problems 4 and 5 Next Week
The RoadMap

○ Last Time:
 ▪ Regression Refresher (there was nothing fresh about it)

○ This Time:
 ▪ Polynomial Regression
 ▪ Regularization (wiggles are bad, Man)

○ Next Time:
 ▪ Bias–Variance Trade-Off (what does it all **MEAN**?)
Previously on CSCI 4622

Given training data \((x_{i1}, x_{i2}, \ldots, x_{ip}, y_i)\) for \(i = 1, 2, \ldots, n\) fit a regression of the form

\[
y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \epsilon_i \quad \text{where} \quad \epsilon_i \sim N(0, \sigma^2)
\]

Estimates of the parameters are found by minimizing

\[
\text{RSS} = \sum_{i=1}^{n} [(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}) - y_i]^2 = \|X\beta - y\|^2
\]

Construct the design matrix \(X\) by prepending column of 1s to data matrix

For the moment, solve via normal equations: \(\hat{\beta} = (X^T X)^{-1} X^T y\)
So, We Can Model Things Like This
And Things Like This
But What About Things Like This?
But What About Things Like This?

- So yeah, nonlinearity is a thing

- Clearly, the linear models of regression cannot handle this.

- Give me Neural Networks or Give me Death!
But What About Things Like This?

- So yeah, nonlinearity is a thing
- Clearly, the linear models of regression cannot handle this.
- Give me Neural Networks or Give me Death!
- Nah. Regression can totally do this
Start with the Obvious: Polynomials

- Suppose, as in the previous pictures, we have a single feature X

- We want to go from this: $Y = \beta_0 + \beta_1 X + \epsilon$

- To something like this: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots + \beta_p X^p + \epsilon$

- So what is the difference between these two?
Start with the Obvious: Polynomials

- Suppose, as in the previous pictures, we have a single feature X

- We want to go from this: $Y = \beta_0 + \beta_1 X + \epsilon$

- To something like this: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots + \beta_p X^p + \epsilon$

- So what is the difference between these two?

- Seems like it’s closer to this: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$
The One Becomes the Many

- Start with a single feature X

- And derive new polynomial features: $X_1 = X$, $X_2 = X^2$, \cdots, $X_p = X^p$

- These two things: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots + \beta_p X^p + \epsilon$

- are exactly the same: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$
The Polynomial Regression Pipeline

- Start with a single feature X

- Derive new polynomial features: $X_1 = X$, $X_2 = X^2$, \cdots, $X_p = X^p$

- Solve the MLR in the usual way: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$

- **Question:** What does the Matrix Equation look like?
The Polynomial Regression Pipeline

- Start with a single feature X

- Derive new polynomial features: $X_1 = X$, $X_2 = X^2$, \cdots $X_p = X^p$

- Solve the MLR in the usual way: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$

- **Question:** What does the Matrix Equation look like?

Before:

\[
\begin{bmatrix}
1 & x_{11} & x_{21} & \cdots & x_{1p} \\
1 & x_{21} & x_{22} & \cdots & x_{2p} \\
1 & x_{31} & x_{32} & \cdots & x_{3p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & \cdots & x_{np}
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_p
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n
\end{bmatrix}
\]
The Polynomial Regression Pipeline

- Start with a single feature \(X \)
- Derive new polynomial features: \(X_1 = X, \ X_2 = X^2, \ \cdots \ \ X_p = X^p \)
- Solve the MLR in the usual way: \(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon \)

Question: What does the Matrix Equation look like?

After:

\[
\begin{bmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^p \\
1 & x_2 & x_2^2 & \cdots & x_2^p \\
1 & x_3 & x_3^2 & \cdots & x_3^p \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^p \\
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_p \\
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n \\
\end{bmatrix}
\]
The Polynomial Regression Pipeline

- Suppose I learn the parameters from the training set

- What if I want to make a prediction about data I haven’t seen yet?

 \[x_0 \rightarrow (1, x_0, x_0^2, \ldots, x_0^p) \]

 \[\hat{y}_0 = x_0^T \hat{\beta} \]
The Polynomial Regression Pipeline

- Suppose I learn the parameters from the training set.
- What if I want to make a prediction about data I haven’t seen yet?

- **Important Theme #1:** If you transform your features for training, predicting is always as easy as transforming the features of your new data in the same way.

\[
\begin{align*}
\text{Input Space} & \quad \rightarrow \quad \text{Feature Space} \\
\text{Training} \quad X & \quad \rightarrow \quad X, X^2, \ldots, X^p \\
\text{Test} \quad X_0 & \quad \rightarrow \quad X_0, X_0^2, \ldots, X_0^p
\end{align*}
\]

MAGIC HAPPENS HERE!
The Polynomial Regression Pipeline

- Suppose I learn the parameters from the training set.

- What if I want to make a prediction about data I haven’t seen yet?

- **Important Theme #1:** If you transform your features for training, predicting is always as easy as transforming the features of your new data in the same way.

- **Important Theme #2:** If your current features are not flexible enough, moving into a higher dimensional space will make your model more flexible (but BEWARE!)
Example: Sinusoidal Data

True Model is $f(x) = \sin(\pi x) + \epsilon$

○ **Question:** What degree polynomial should I use?
Example: Sinusoidal Data

True Model is $f(x) = \sin(\pi x) + \epsilon$

- **Question**: What degree polynomial should I use?
- **Degree** = 1
Example: Sinusoidal Data

True Model is \(f(x) = \sin(\pi x) + \epsilon \)

- **Question:** What degree polynomial should I use?
- **Degree = 4**
Example: Sinusoidal Data

True Model is $f(x) = \sin(\pi x) + \epsilon$

- **Question:** What degree polynomial should I use?
 - Degree = 7
Example: Sinusoidal Data

True Model is $f(x) = \sin(\pi x) + \epsilon$

- **Question**: What degree polynomial should I use?
- **Degree** = 11
Example: Sinusoidal Data

True Model is $f(x) = \sin(\pi x) + \epsilon$

- **Question**: What degree polynomial should I use?
- Degree = 11
- What Questions should we be asking?
The Real ML Pipeline (Almost)

The more flexible (powerful) your model gets, the better it’ll do on training set.

But that’s not useful. We want to know how model will do on new data.

How well it’ll Generalize.

A better pipeline:

- **Train** on training set. **Validate** (or evaluate) on validation set.
The Real ML Pipeline (Almost)

Need a performance measure:

For Regression, we use the Mean-Squared Error:

$$
\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
$$

All Labeled Data \Rightarrow Training Set \Rightarrow Validation Set
Example: Sinusoidal Data

What happens to the MSE on training set as p grows?

What happens to MSE on validation set as p grows?

MSE goes down, then back up!

At first
Example: Sinusoidal Data

![Graph showing MSE vs polynomial degree]

- **FLEXIBLE ENOUGH MODEL**
- **OVERFITTING HAS STARTED**
Example: Sinusoidal Data

Revisit Polynomial Regression

What causes those wiggles that are hurting us so bad?
True Model is $f(x) = \sin(\pi x) + \epsilon$
Example: Sinusoidal Data

True Model is $f(x) = \sin(\pi x) + \epsilon$
Example: Sinusoidal Data

True Model is \(f(x) = \sin(\pi x) + \epsilon \)
Example: Sinusoidal Data

True Model is $f(x) = \sin(\pi x) + \epsilon$
Example: Sinusoidal Data

Coefficients grow very large. Need a way to control them. Regulate them even
Regularization

Goal: Keep model coefficients from growing too large

Idea: Put something in the loss function to dissuade them growing too much

\[
\text{minimize} \quad RSS_{\lambda} = \sum_{i=1}^{n} \left[(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}) - y_i \right]^2 + \lambda \sum_{k=1}^{p} \beta_k^2
\]

- Regularization weight \(\lambda \) is a tuning parameter
- Have to do regularization study to choose best value
Regularization

Goal: Keep model coefficients from growing too large

Idea: Put something in the loss function to dissuade them growing too much

\[
RSS_\lambda = \sum_{i=1}^{n} \left[\left(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} \right) - y_i \right]^2 + \lambda \sum_{k=1}^{p} \beta_k^2
\]

- Why do we not regularize the bias parameter?

**BIAS TELLS US ABOUT AVERAGE RESPONSE (HEIGHT OF DATA). REGULARIZING \(\beta_0 \) PULLS THE WHOLE MODEL DOWN FROM WHERE SHOULD BE
Ridge Regression

Goal: Keep model coefficients from growing too large

Idea: Put something in the loss function to dissuade them growing too much

\[
RSS_\lambda = \sum_{i=1}^{n} \left[(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}) - y_i \right]^2 + \lambda \sum_{k=1}^{p} \beta_k^2
\]

- This form of penalty term is called Ridge Regression. But there are many more
Sinusoidal Data with Ridge Regression

Watch the coefficients

NOTE: COEFFICIENTS STAYED SMALL!
Example: Sinusoidal Data

No Regularization

Ridge Regression

BLOW-UP HAPPENS MUCH LATER!
Example: Sinusoidal Data

Regularization Study:
- Choose poly degree
- Vary over reg strength
- Look for best validation MSE
Example: Sinusoidal Data

Regularization Study:
- Choose poly degree
- Vary over reg strength
- Look at size of coefficients

$\text{COEFFS SHRINK AS } \lambda \to 0$
Regularization Wrap-Up

You should always do regularization.

If you choose λ carefully, it will always help Generalization

Next Time:

- Talk more about Ridge Regression Details
- Learning Curves and what they tell us about the Bias-Variance Trade-Off