
Chimera: Hypertext for Heterogeneous Software Environments

Kenneth M. Anderson, Richard N. Taylor, E. James Whitehead, Jr.�

Department of Information and Computer Science
University of California, Irvine
Irvine, California 92717-3425

FAX +1.714-856-4056
e-mail: fkanderso,taylor,ejwg@ics.uci.edu

ABSTRACT

Emerging software development environments are charac-
terized by heterogeneity: they are composed of diverse ob-
ject stores, user interfaces, and tools. This paper presents an
approach for providing hypertext services in this heteroge-
neous setting. Central notions of the approach include the
following. Anchors are established with respect to inter-
activeviewsof objects, rather than the objects themselves.
Composable,n-ary links can be established between anchors
on different views of objects stored in distinct object bases.
Viewers (and objects) may be implemented in different pro-
gramming languages afforded by a client-server architec-
ture. Multiple, concurrently active viewers enable multime-
dia hypertext services. The paper describes the approach and
presents an architecture which supports it. Experience with
the Chimera prototype and its relationship to other systems
is described.

Categories and Subject Descriptors:
H.5.1 [Multimedia information systems]
D.2.2 [Software Engineering]: Tools and techniques;
I.7.2 [Document preparation] Hypertext/hypermedia;
General Terms: Design, Experimentation
Additional Key Words and phrases: heterogeneous hyper-
text, hypertext system architectures, link servers, separation
of concerns, software development environments.

1 Introduction

Software development environments (SDEs) are used to de-
velop and maintain a diverse collection of highly interrelated

�This material is based upon work sponsored by the Advanced Research
Projects Agency under Grant Number MDA972-91-J-1010. The content of
the information does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.

0Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commerci al
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copyright is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

c
1994 ACM 0-89791-xxx-x/xx/xxxx...

software objects [2, 8, 20, 35]. Large software systems may,
for example, consist of multiple versions of requirements
specifications, designs, prototypes, code, test information,
scripts, documentation, and so on. The connections between
these components are many and complex. Establishing and
exploring these connections are major tasks of development,
program understanding, and maintenance. Researchers have
recognized that the size, complexity, and interconnectedness
of these systems place a severe cognitive load on software
engineers which often leads to errors at high levels of sys-
tem abstraction, such as requirements and design [1, 17].

It has been suggested that the attributes of hypertext make
it an excellent technology for capturing and visualizing rela-
tions in a SDE [7]. Providing hypertext capabilities in a SDE
allows an engineer to freely associate objects without regard
to the type of those objects or where they are stored. These
relationships can then be accessed at a later time through a
convenient user interface which allows the engineer to eas-
ily navigate them [30]1. Yet while some excellent work has
taken place in this area [3, 4, 7, 9, 10, 11, 22, 24, 28, 29, 31], it
is clear that no single system to date has effectively addressed
all the technical challenges posed by this task.

We believe that the following technical features are among
those which need to be present in hypertext systems intended
to support SDE activities2.

Heterogeneous object editor & viewer support.SDEs
contain a wide variety of tools for developing and ma-
nipulating objects. Different kinds of editors are used
for different types of objects. SDEs also increasingly
include multiple viewers of single objects, where each
viewer presents different aspects of the object, perhaps

1We recognize that some in the software engineering community would
argue that more conventional object management systems are the appropri-
ate technology for capturing relations and that free object association should
not be allowed. The purpose of this paper is not to argue this point. Our
perspective is that given some engineers prefer the hypertext approach, we
examine how the approach may be supported.

2There is some overlap with our list and the fifteen assumptions listed by
Leggett and Schnase when discussing hypermedia-in-the-large [21]. Since
we arrived at our list independently, we view this as an indication our ap-
proach and contributions have significant value outside the domain of soft-
ware development environments.

using different depiction styles. It is unlikely that soft-
ware development teams will give up their favorite tools
in exchange for hypertext functionality. Thus a mono-
lithic approach to providing hypertext services to a SDE
would be ineffective. Ideally all editors and viewers3 in
an environment should be able to use hypertext services
and respond to hypertext events.

Anchors specialized to particular views. Given that dif-
ferent viewers of a single object may present strikingly
different depictions, or that one viewer may present a
depiction of information synthesized from several sep-
arate objects, anchors seem more naturally — or neces-
sarily — associated with views, rather than objects.

Multiple-view, concurrent, and active displays. Since a
software developer is typically engaged in examining
and changing many different related objects “at once”
it is most supportive to provide a system which enables
many views to be present simultaneously, where several
views may be of the same object, and where actions in
views may be autonomous and concurrent.

Links across heterogeneous object managers.SDEs
manage such a wide variety of objects, of different lega-
cies, types, and possessing different object management
constraints, that large scale SDEs are now beginning to
support multiple, heterogeneous object managers. It is
nonetheless essential to be able to establish links be-
tween objects managed by different repositories.

Action specifications on both anchors and links.Given
that many different users, of different abilities and train-
ing, may be collaborating on a project using a SDE, it
seems useful to provide programmable actions on both
anchors and links so that actions could, for example, be
determined as a function of who selected an anchor in
a particular view, or how a particular link traversal was
requested.

Scalable (composable) links.Hierarchy and abstraction
are two key tools that engineers employ in undertak-
ing large-scale problems. Hypertext support for SDEs
must similarly provide such capabilities for dealing with
large, complex, aggregations of information.

n-ary links. Software development often involves situa-
tions where several pieces of information jointly rep-
resent a single concept or are in some sense “grouped.”
We claim therefore that hypertext support for SDE ap-
plications should provide such capabilities in the form
of n-ary links.

Multiple contexts. The process of software development
involves many stages (often including cycles) where
different types of information are more important than

3From now on we will use the term “viewer” to denote tools capable
of visually depicting an object and which may include interactive editing
capabilities.

others. Often software team members have many differ-
ent roles both between and within these different stages.
As such, hypertext support for SDEs should be able to
take into account the current stage of the software devel-
opment process and enable engineers to quickly access
critical information.

This paper describes a set of concepts which satisfy this set
of requirements, and a prototype which implements the de-
scribed concepts. The notion of viewers of objects is at the
heart of the conceptualization. We postulate an environment
of many types of objects; display or editing of an object re-
quires use of a viewer. Not all viewers are of the same type;
how they manage their display is their decision. We have
developed a set of interfaces whereby a viewer announces to
the hypertext system the anchors it defines for its view of its
object(s). These view-specific anchors can then participate
in (many) links. Links may be considered objects in their
own right, and may thus have viewers associated with them
which can define yet additional anchors. These anchors can
participate in other links, and in so doing provide hierarchical
composition.

This approach brings along with it some limitations and re-
quirements. In order for our techniques and interfaces to be
of value, the viewers in the SDE must be programmed to
utilize the hypertext system’s application program interface
(API). The viewers are also responsible for maintaining (over
time) the associations they make between the anchors they
announce to the hypertext system and the objects or process
artifacts (e.g. a button in a window) that they display in their
views.

Since heterogeneous environments are most often multilin-
gual and distributed, the generic architecture and our imple-
mentation is client-server based and a multilingual remote
procedure call (RPC) mechanism (Q [23]) is utilized. Our
prototype implementation, Chimera4, utilizes the Pleiades
object management system from the University of Mas-
sachusetts [32] for persistence of the server’s data structures.
To illustrate the concepts and the Chimera system, we dis-
cuss an application in which graphical views of a flight sim-
ulator’s instrument panel are hyperlinked to statements in a
requirements document maintained by FrameMakerR
5. The
Chiron user interface development and management system
(Chiron) from the University of California, Irvine [33, 34] is
used as the graphical viewer of the instrument panel.

The remainder of the paper is organized as follows. The
next four sections present the basic concepts, the conceptual
architecture, our particular implementation, and our future
plans. We then discuss related work and conclude.

4According to Merriam-Webster’s 9th Collegiate Dictionary, “an indi-
vidual, organ, or part consisting of tissues of diverse genetic constitution...”

5FrameMaker is a registered trademark of Frame Technology
Corporation.

Figure 1: Chimera Concept Example. Chimera's hypertext concepts are shown on the left. Two viewers
are combined with one object to produce two distinct views. An anchor is added to each view and then
combined in one link. On the right, an example hyperweb presents a data file (stored as a file in the
operating system) being displayed by two different viewers. One viewer displays the data as a
spreadsheet, creating a spreadsheet view of the data file.The other viewer displays the data as a chart,
creating a chart view of the same data. The two distinct anchors are indicated by a black box in the
spreadsheet, and a black underline in the chart. The anchors are stored in the Chimera database, not in
the data file. The two anchors are members of the link. Attribute-value pairs are not indicated to avoid
visual clutter.

Set of ObjectsSet of Viewers

Set of Links

Set of Anchors

Set of Views

Object 1

Chart

Viewer

Spreadsheet

Viewer

displays displays

reads in reads in

Viewers

1 and 2

Views

1 and 2

Link 1

(Anchor 1, Anchor 2)

Anchor 1 Anchor 2

2 Hypertext Concepts

Chimera has a flexible set of hypertext concepts that map
well into the domain of software development environments.
Our concepts include objects, viewers, views, anchors, links,
attribute-value pairs, and hyperwebs (See Figure 1). In the
remainder of this section, we define each concept and provide
an example which illustrates how they can be applied in a
software development environment.

Objects Objectsare named, persistent entities whose inter-
nal structure is unknown and irrelevant to Chimera.

Viewers Viewersare named active entities that display ob-
jects. The operations provided by a viewer are specific
to the viewer and the type of objects it displays. Typ-
ically viewers provide browsing, creation, and editing
functionality on objects within their domain.

Views Viewsdenote a pair(v; o) wherev is a viewer for an
objecto. Note that an object may be displayed by more
than one viewer, and thus participate in multiple views.
Views contain anchors.

Anchors Anchorsare defined and managed by viewers in
the context of a view. An anchor tags some portion of
a view as an item of interest. Anchors are tailored by
a viewer to the particular view of the object being dis-
played. Unlike hypertext systems which require direct
anchor to object mappings [12], with anchors often em-
bedded in the objects themselves [25], Chimera anchors
may represent some purely visual component, such as a
button or other interface element. Even when creating
anchors on the view of an object, the underlying object
may be left unmodified, still usable by tools unaware of
Chimera’s existence.

Links A link is a set of anchors. Links relate portions of
views. Links are first-class objects in Chimera and a
viewer can be constructed to display them. Anchors
may be created on these link views and included in other
links. In this manner Chimera supports “links to links,”
an important abstraction which supports construction of
large, complex hyperwebs.

Attribute-Value Pairs. Each instance of a Chimera hyper-
text concept can have an arbitrary number ofattribute-
value pairsassociated with it. An attribute-value pair
consists of two associated strings where one string con-

tains the attribute’s name, the other its value. Attribute-
value pairs are commonly used in hypertext systems to
provide run-time semantics or behavior for hypertext
entities [3]. Example uses of attributes include provid-
ing access to an anchor only to the user who created it,
or link viewers filtering their displays to show only cer-
tain types of links.

Hyperwebs A collection of objects, viewers, views, an-
chors, and links along with their attributes is a Chimera
hyperweb. A hyperweb is similar to Leggett’s hyper-
media [21] and Halasz’s hypertext [13].

Example. Several of the Chimera hypertext concepts are
demonstrated by a term project from a senior level software
engineering project class. For this project, students aug-
mented a flight simulator program distributed with Chiron
so that its design and requirements documents, both created
with FrameMaker, are efficiently accessed via link traversal.

At the heart of the flight simulator are abstract data types
(ADTs) representing the state of the aircraft, including the
aircraft’s pitch, roll, heading, altitude, and speed. Gauges
in the flight simulator’s cockpit visualize information from
these ADTs as they are updated by the simulator’s flight
equations. Chiron performs this visualization. In this ap-
plication the ADTs are considered Chimera objects, Chiron
is considered a Chimera viewer, and the gauges that Chiron
produces are Chimera views.

The flight simulator requirements and design documents
were written using FrameMaker. Both documents are con-
sidered Chimera objects. FrameMaker allows users to access
and edit these documents, hence FrameMaker is a (Chimera)
viewer. The display of the requirements document represents
a Chimera view, as does the display of the design document.
Anchors are created on the display of the section titles within
these documents.

Students added two buttons to each flight simulator gauge,
marked “Requirements” and “Design” respectively. These
buttons do not visualize any portion of the ADT represented
by each gauge, rather they are the visual indication of two
Chimera anchors created on the gauge/view. For each gauge,
the Requirements anchor was put in a link along with an an-
chor on the top of the requirements document section de-
scribing that gauge. Thus, a single click of the requirements
button takes the engineer from the running (“flying”) simu-
lator to the requirements for that gauge in the requirements
document. The Design anchor was similarly linked to the
design document.

The artificial horizon gauge demonstrates the value of the
Chimera view concept. This gauge produces a visualization
which is a synthesis of information from two objects, the
pitch ADT and the roll ADT. This gauge represents a distinct
view from the gauges/views that just show the values of the
two ADTs separately. Students were able to add their anchor
buttons to all three views. Thus while there is no object in the

application which directly corresponds to the artificial hori-
zon view, the engineer is nonetheless able to link the gauge
to its appropriate requirements document. Moreover since
Chimera anchors are defined on a view rather than an object,
anchors can be added to multiple simultaneous views of the
same object.

3 A Conceptual Architecture

Section 2 outlined Chimera’s hypertext concepts and gave
a short example mapping them into a reasonably complex
software development project. This section sketches a con-
ceptual architecture which supports these concepts. This ar-
chitecture adopts a client-server approach to providing hy-
pertext services. We term this the Chimera architecture (See
Figure 2).

A client-server approach is adopted to help meet the chal-
lenges of a heterogeneous SDE in which there are many
users. A client-server approach allows multiple users on
different machines to access a hyperweb from a dynami-
cally changing set of viewers; hypertext events originate in
one viewer and propagate to (potentially many) others via
the server. The use of a server supports a multilingual ap-
proach where clients can be written in different programming
languages, each of them accessing the server through their
language-specific API. The use of a server also keeps process
and object file sizes down since code to manage a hyperweb
is centralized in the server.

We now discuss the components of the Chimera architecture
which are the Chimera server, the Chimera clients, the pro-
cess invoker, and the external tools and systems that populate
any SDE.

3.1 Chimera Server

The primary responsibilities of the Chimera server are as fol-
lows.

� Provide services which allow clients access to
Chimera’s hypertext concepts.

� Manage the persistence of a hyperweb. Through the use
of an object manager, the Chimera server must map in-
stances of Chimera’s hypertext concepts into a persis-
tent store. The Chimera server is not responsible for the
persistent storage of client object data.

� Receive, route, and generate hypertext events6. The
server must also provide a means for clients to register
interest in a subset of these events.

6The set of hypertext events are left undefined in the conceptual archi-
tecture; only their existence is important at this point.

Chimera

API

Viewer A

Viewer B

Chimera

API

Viewer A

Viewer C

Viewer D

Figure 2: Example instance of Chimera conceptual architecture. Chimera clients consisting of one or
more viewers access the Chimera server to provide hypertext services to their users. Note that there are no
restrictions on the number of clients, the number of viewers per client, and that the same viewer can appear
in multiple clients. The process invoker can invoke Chimera clients as directed by the Chimera server.
Chimera clients can also access external systems in the environment, such as a graphics server or a sound
server. All entities are separate Unix processes and can read/write information to a repository such as a file
system or object manager.

Viewer-specific

persistent data

Viewer-specific

persistent data

Chimera Internal Database

RPC Chimera

Client

Chimera

Client

communicatesExternal

System

Chimera

Server

Process

Invoker

Invokes

Read/Write Read/WriteRead/Write

RPC RPC

� Manage each connected client. For instance, the
Chimera server should know what viewers are running,
what view each viewer is in, and if the viewer is ready
to receive hypertext events.

3.2 Process Invoker

The process invoker is responsible for spinning up Chimera
clients. This occurs when the Chimera server determines it
needs to send a hypertext event to a viewer that is not run-
ning. The process invoker maintains a mapping between
viewer names and executable programs7. When the Chimera
server sends the process invoker a viewer name, the process
invoker invokes the executable program via operating sys-
tem services.

3.3 Chimera Client

A Chimera client includes one or more viewers and the li-
braries needed to communicate with a Chimera server. Each
viewer in a client is responsible for the following.

7This map is supplied and maintained by the administrator of a Chimera
hyperweb.

� definition of the concepts “object” and “view”. Each
viewer must determine the precise meaning of these
concepts in their own context. While this is typically
straightforward, ambiguity may arise especially with re-
spect to versions of objects.

� definition of the concept “anchor”. This includes iden-
tifying what elements of a view can have anchors at-
tached to them, how these anchors are created and
deleted, how the presence of an anchor is indicated,
and what attributes can be assigned to an anchor. Since
each viewer may choose to implement this functionality
in different ways, a uniform interaction style cannot be
guaranteed8. This is one of many issues facing design-
ers of open hypertext systems [4, 15, 25].

� a mapping function from an anchor identifier (received
from the Chimera server at the time the anchor is cre-
ated) into a specific region or object of its display.

8This is potentially troublesome since the user has to remember how
this hypertext functionality is invoked for each viewer [9]. This is a design
trade-off involving ease-of-use, open systems, and customized interfaces.
We believe requiring a single, standard style to be too restrictive: that would
prevent many existing viewers from participating in Chimera. On the other
hand, it is possible to provide a set of reusable components that developers
can utilize which simultaneously simplifies the task of writing viewers and
promotes uniform authoring, display, and interaction styles.

� an event handler which will respond to hypertext events
from the Chimera server.

� communicating with the Chimera server. This includes
registering for hypertext events, indicating its current
view (which may change if the viewer is asked by its
user to display a different object), accessing the ser-
vices related to Chimera’s hypertext concepts, and let-
ting the Chimera server know that it is ready to receive
hypertext events (this provides time for a newly invoked
client to initialize before the server sends it any hyper-
text events).

� providing a mechanism for persistent storage of object
data.

3.4 External Systems

Viewers in a Chimera client may directly interface with the
user, may require the use of external tools, or may use a
user interface management system to present their interface.
Chimera does not place any restrictions on what external sys-
tems are accessed by its clients or how these clients commu-
nicate with their users.

4 An Implementation Architecture

We have constructed a prototype of Chimera to validate the
concepts presented in Section 2 and the conceptual architec-
ture of Section 3. This prototype has been used to support the
example described in Section 2 (as well as many other ap-
plications). Our prototype was constructed on Sun SPARC-
stations under the Unix operating system using the Ada and
C programming languages. In this section, we describe the
design choices that we made in mapping the conceptual ar-
chitecture into a working prototype and discuss other issues
concerning the prototype such as performance and size statis-
tics.

4.1 Chimera Server

The Chimera server realizes and in some cases exceeds the
goals set out for it in Section 3.1. We discuss each goal in
roughly the order they were presented in Section 3.1 in the
paragraphs below.

At the heart of the Chimera server lies a set of Ada packages
which implement Chimera’s hypertext concepts as ADTs.
The Chimera server coordinates access to this set of ADTs
by responding to remote procedure calls made by Chimera
clients. These clients are invoked by end-users (or the
process-invoker) and typically contain one viewer (although
multiple viewers per client is allowable). The Chimera server
can handle multiple clients run by multiple users at the same
time.

Filtering information is maintained for each viewer con-
nected to the Chimera server. Anchors and links can be fil-
tered such that different sets of these concepts can be pro-
vided to different users for the same view. Users can select
the level of filtering received if the viewer provides an in-
terface to do so9. The default filtering level is none, i.e., all
anchors and links for a particular view are accessible. The
other filtering level is useronly, such that only those anchors
and links created by a user on a particular view are accessi-
ble. This functionalityallows Chimera to provide support for
multiple contexts in a single hyperweb. Eventually we plan
to implement a system of ownership and permissions mod-
eled after Unix’s file permissions. Thus, only those anchors
and links which are readable by a user will be accessible for
a particular view. We will then extend Chimera’s support for
multiple contexts by allowing a user to have different roles
and thus gain access to different sets of anchors and links.

An active link is maintained for each user connected to the
Chimera server. An active link is a mechanism provided by
the Chimera server to allow modeless link creation. In typ-
ical hypertext systems, link creation occurs as a mode. The
user indicates that a new link is desired, adds (typically two)
anchors to this link and then continues working. In Chimera,
a user can create several empty links, select one of these links
to be active, and then add anchors to this active link at any
time thereafter. The user can also at any time select another
link to be the active link. Note that viewers are not required
to use the active link mechanism. It is provided only as a
convenience function in an attempt to foster common inter-
action styles between Chimera viewers. A viewer can forgo
the active link mechanism, register its own links, and modify
them independent of other viewers.

Hyperwebs are mapped into Unix directories where the
Chimera server stores temporary run-time files along with
the persistent state of its ADTs. The ADTs save their state
information with the Pleiades object management system.
Users select which hyperweb they want to access through
a resource file (.chimerarc) located in their home directories
which the Chimera server reads on start-up.

The Chimera server currently supports fourteen hypertext
events and clients can register or deregister interest in any
of them10 (See Figure 3). The events range from reporting
changes to the hyperweb, such as the addition or deletion of
hypertext concepts, to link traversal events and active link
events.

Finally, clients provide a variety of information about them-
selves to the server. This information includes whether each
viewer in each client is ready to receive hypertext events,
what hypertext events each viewer is interested in, and what
view(s) each viewer is in. The server also knows how each

9Since Chimera is an open hypertext system, this functionality can not
be guaranteed across all viewers. It will only exist if the viewer developer
decides to include it in a particular viewer.

10A client is assumed to have no interest in any event when it first contacts
the Chimera server.

Event Name	 Associated Information

Server Disconnect	 None

New Viewer	 Viewer Identifier

Delete Viewer	 Viewer Identifier

New Object	 Object Identifier

Delete Object	 Object Identifier

New View	 View Identifier

Delete View	 View Identifier

New Anchor	 Anchor Identifier

Delete Anchor	 Anchor Identifier

New Link	 Link Identifier

Delete Link	 Link Identifier

Modify Link	 Link Identifier

Link Traversal	 Anchor Identifier

Active Link	 Link Identifier

Figure 3: Chimera's Hypertext Events

viewer would like to be invoked via an invocation policy at-
tribute associated with each viewer. This policy is used when
the server must send a link traversal event to a view not cur-
rently displayed by any connected viewer. A viewer with an
invocation policy of “OnceOnly” is only invoked once and
all subsequent link traversal events are sent to it. This is for
viewers which can display multiple views, perhaps by open-
ing a new window for each one or by closing the previous
view before opening the new one. An alternative invocation
policy is “Every Time” which causes the server to invoke
(via the process invoker) a new instance of a viewer each
time a link traversal occurs to an undisplayed view.

4.2 Process Invoker

The process invoker is an RPC server to which the Chimera
server sends messages when it wants a particular viewer in-
voked. The Chimera server sends a viewer name which the
process invoker maps into an executable program or shell
script which it then invokes. This invocation is currently
handled by having the process invoker use the Unixfork
command to start a child process. This child process calls
the Unix execvp command which replaces the child pro-
cess with the specified executable program which then begins
to run. The map that the process invoker uses to determine
which executable program to run is read in once at start-up
and is stored in the hyperweb that the user is accessing. The
information in the map file must be entered manually via a
text editor in the current implementation. (The limitations
implicit in this will be fixed in future implementations. They
can be overcome by providing tools to manage a process in-
voker’s map file and altering the process invoker to detect
changes to its map file at run-time.)

4.3 Chimera Client

A major benefit of the client-server architecture of Chimera
is that its clients may be written in more than one language.
An API to the Chimera server for a particular language is re-
quired before that language can be used to construct Chimera
clients. An advantage of the API approach is that low-level
RPC details of passing messages to the Chimera server are
completely hidden from the clients which use the API. In-
stead clients invoke subprograms likeregister anchor
or traverse link and the API converts these subpro-
grams calls (and their parameters) into the appropriate RPC
messages and ships them to the Chimera server. The API also
passes back any return values from the server to the calling
client. This conversion is straight forward and includes cre-
ating a new RPC buffer, marshaling the parameters into the
buffer, making the actual RPC call, retrieving any return val-
ues from the buffer, and deallocating the RPC buffer.

Chimera supports clients written in Ada and C with APIs for
both languages. Several clients have been written using each
of these APIs. A C++ API is in the works but, as of this
writing, is not yet complete. In addition, engineers at IBM
Owego, New York, developedtcl bindings to Q with the re-
sult being that they can send RPC messages to the Chimera
server. Thesetcl bindings do not represent a complete API
to Chimera, however, since they cannot yet receive hypertext
events from the Chimera server. Work is now in progress to
develop atcl API which is built on top of the C API.

The Ada API creates two Ada tasks per viewer. One task han-
dles sending messages to the Chimera server; the second task
handles receiving hypertext events from the server. These
tasks operate independently and maintain separate Unix
sockets. This allows multiple connections to the Chimera
server within a single Unix process. The Ada API has proven
to work successfully with other client-server systems, the
most notable being a simultaneous connection by one viewer
to a Chimera server, a Chiron server, and a sound server.

The C API allows C programs to use Chimera services within
a single Unix process. Two sockets are maintained by the C
API, requiring application writers to take responsibility for
the scheduling of message transmission and event reception.
Since many programs using the C API will also use X Win-
dows to produce their user interface, support was added to re-
ceive Chimera events from within an Xt event loop. Chimera
events are handled using a callback mechanism. To date, four
separate C programs have been written which are simultane-
ously Chimera and X clients within a single Unix process.

4.4 External Systems

As of this writing, seven viewers for several media types
have been integrated with the Chimera system. These view-
ers are briefly described below.

FrameMaker The FrameMaker program was integrated
into the Chimera systemwithout modifying its exe-
cutable image. A wrapper program translates between
Chimera hypertext concepts and FrameMaker’s built-in
hypertext concepts. Custom FrameMaker macros were
written for anchor creation so link traversal messages
could be received by the wrapper.

xvi The public-domain vi-clone ‘xvi’ was integrated with
Chimera by a group of senior students as a class project
for a software engineering project course. All exist-
ing vi editing functions work normally, with hypertext
functionality accessed through a graphical control panel
written using the Motif toolkit. Chimera services are ac-
cessed through the C API. Link traversals to xvi cause
a different buffer to be opened for each new file refer-
enced in the link.

Flight Simulator As described earlier, the flight simulator
is a simulation of an aircraft. Written in Ada using Ch-
iron, the flight simulator features each gauge in a sepa-
rate thread of control. The Ada API easily allows mul-
tiple threads of hypertext functionality to operate inde-
pendently within a single Unix process.

mpeg An ambitious term project for the software engineer-
ing project course, the mpeg viewer allows anchors to
be defined on mpeg movies. Anchors may be defined on
sections of each frame, and may have a duration from
one frame to the entire movie. Authoring support al-
lows anchors to be defined on a frame, then copied from
frame to frame. Authors may then single-step through
the movie and adjust anchors on individual frames for
the best fit. Anchors may be added to the active link
from any frame. The mpeg viewer was created by ex-
tending a public-domain mpeg player using the C API.

xgif Another result of the same course, the xgif viewer al-
lows anchors to be defined on sections of a GIF11 image.
A public-domain GIF viewer was augmented using the
C API to display a hypertext control panel written using
the Motif toolkit. The control panel varies depending
on whether the GIF viewer is in author mode or view
mode. Link traversals to xgif cause a new xgif process
to be invoked to view the linked-to GIF file.

Sound Player The sound player presents a list of sounds to
which anchors are attached. Link traversals to a particu-
lar anchor causes the sound player to play the associated
sound. The Sound Player uses Chiron for its user inter-
face, the Ada API for its hypertext functionality, and a
Sun sound server for sound capability, making it simul-
taneously a client of three separate servers.

Button The button is a simple viewer which displays a win-
dow containing only a button. An anchor is then asso-
ciated with this button. This anchor may be a member

11The Graphics Interchange Formatc
is the Copyright property of Com-
puServe Incorporated. GIFS
 is a Service Mark property of CompuServe
Incorporated.

of only one link (a restriction enforced by this particular
viewer), and can be used as a placeholder for a section
of a document. This viewer is noteworthy since its view
is not associated with any underlying object, yet it can
participate in a Chimera hyperweb.

4.5 Metrics

The Chimera API consists of approximately 90 entry points.
The Ada API library is 296 kilobytes (K) in size. The C API
library is 62 K. The Chimera server is 2.3 megabytes in size
and uses approximately 5 megabytes of memory when exe-
cuting.

Our metrics for the performance of Chimera is anecdotal.
From a user’s perspective, a link traversal between two run-
ning viewers occurs instantaneously. If a link traversal leads
to a non-running viewer, there is a noticeable delay while
Unix spins up the new process. After the newly invoked
viewer has initialized the completion of the link traversal oc-
curs quickly.

We conducted one performance experiment with the in-
tegrated FrameMaker client. We set up a link traversal
between two FrameMaker documents using Chimera and
FrameMaker’s own internal hypertext functionality. The
user noticed no difference between the time it took to com-
plete either traversal despite the fact that the Chimera link
traversal involved the passing of RPC messages across four
Unix processes while the FrameMaker link traversal was
handled completely within FrameMaker.

5 Future Work

5.1 Versioning

Version control mechanisms are very important for any hy-
pertext system that wishes to support software engineering
activities in a non-trivial fashion [14, 18]. Chimera is no ex-
ception, and a mechanism for versioning is a research prior-
ity. A brief discussion of our preliminary approach is given
below.

Since Chimera intentionally offers no support for storing ap-
plication objects within its hypertext data repository, version
control responsibility must be shared between Chimera and
its client applications. As an example, Chimera will un-
doubtedly be used to create relations between source code
files. Version control responsibility for the files alone will
rest with an existing revision control system such as RCS
[36]. Responsibility for versioning the relations between the
files will reside with Chimera.

Each concept within Chimera shall be capable of multiple
versions. This raises significant issues of consistency main-
tenance when a concept instance is changed. For example,

when an anchor is deleted, it must also be removed from
any links to which it belongs, requiring a new version of
those links. Another issue is consistency maintenance be-
tween versions maintained by an external versioning system
and versions maintained by Chimera. Resolving this issue
and providing a mechanism for flexible multi-concept ver-
sion naming requires a new first-class concept in Chimera,
theconfiguration. A configuration will contain a snapshot of
the current versions of a hyperweb subset. External object
versions can then be mapped to a configuration.

It is anticipated that parallel version paths will be sup-
ported by Chimera using the first-class configuration con-
cept. While explicit mechanisms will need to exist to sup-
port the creation of new branches, once a new branch has
been created its use should be mostly transparent. Merging
of paths will require the use of a special utility which will
resolve conflicts, prompting the user for guidance, if neces-
sary.

5.2 Collaborative Hyperweb Construction

Chimera does not currently support the collaborative build-
ing of linked hyperwebs in real-time by multiple users where
each user is made aware of other user actions12. This is due
to limitations in the conceptual architecture that must be ad-
dressed, as well as the current implementation’s restriction
of one Chimera server per hyperweb. The major limitation
of the current conceptual architecture is that the Chimera
server must maintain the data stored in a hyperweb along
with managing any Chimera clients that connect to it. What
is needed is a separation of concerns where a new compo-
nent, thehyperweb server, is added to the conceptual archi-
tecture. This new component relieves the Chimera server
from its data management activities. This involves mov-
ing the ADTs which implement Chimera’s hypertext con-
cepts from the Chimera server to the hyperweb server. The
Chimera server component is then free to concentrate on
supporting client access to multiple hyperweb servers (and
thus multiple hyperwebs). We postulate an environment in
which there is one hyperweb server per hyperweb with mul-
tiple Chimera servers managing collaborative user access in
real-time to these hyperweb servers. The two sets of servers
would need to work together to handle links created between
hyperwebs and also to ensure that notification of changes
made to the information space is propagated to all connected
users. We also anticipate that the Chimera server will sup-
port access to distributed objects by employing a Universal
Resource Locater (URL) style object naming mechanism and
an existing transfer protocol to access remote objects.

12As of this writing, Chimera supports the collaborative building, in a
limited manner, of a single hyperweb, since all the viewers participating in
the collaboration can register for the appropriate hypertext events from the
Chimera server managing that particular hyperweb. It is limited in the fact
that two or more users cannot modify the same link at the same time and
the notification of other user’s actions occurs after those actions have taken
place.

6 Related Work

There has been substantial evolution of hypertext functional-
ity during the last decade and several significant efforts to ap-
ply hypertext to the software development problem (or sim-
ilar). The systems described below are discussed in chrono-
logical order of appearance and were chosen either for their
historical importance or because of their close relation to and
impact upon the design of Chimera.

6.1 The Dexter Hypertext Reference Model

The Dexter Hypertext Reference Model (Dexter) is a frame-
work for comparing hypertext systems developed as the re-
sult of two NIST workshops in 1988 [13]. It attempts to
provide a standard hypertext terminology and also describe
the important abstractions found in hypertext systems. At
least one system has been developed based on Dexter (De-
Vise [12]) and Dexter itself has also been extended (AHM
[16]).

Dexter defines three layers: the run-time layer, the storage
layer, and the within-component layer. The storage layer sits
in the middle and interfaces with the run-time layer via pre-
sentation specifications, and the within-component layer via
anchors. The storage layer creates a network of components
of three types: atomic, composite, and link. Atomic compo-
nents contain data stored in the within-component layer and
presented by tools in the run-time layer. In addition, atomic
components contain anchors which index directly into the
data and allow the data to be linked. Composite components
allow scalable hyperwebs to be constructed. Link compo-
nents contain specifiers which describe how atomic and com-
posite components are linked together.

Chimera cannot be completely modeled in Dexter. For in-
stance, Chimera can handle the presence of links with zero
or one anchors (dangling links). Dexter’s intolerance for
such constructs has been widely criticized [12, 16, 21]. Also
Chimera’s notion of a view cannot be adequately modeled by
a composite component, because a Chimera view contains
information about the object being viewed and the viewer
used to create the view. A composite component on the other
hand only contains references to atomic components which
only contain data. In Dexter, anchors are created directly
on the data referenced by atomic components, whereas in
Chimera, anchors are created on views not on the objects
(i.e. data) themselves. This additional level of abstraction
is not possible in Dexter. In fact, we believe that Dexter can-
not model the case where the same object (atomic compo-
nent) is displayed differently by two or more viewers with
each viewer accessing a different set of anchors and links.
Chimera’s view concept handles this example easily while
in Dexter there would be no way to specify it. Finally, a
viewer is free to define its anchors with respect to anything
in its view including objects which exist only at run-time e.g.

a graphical widget. We believe that Dexter would be unable
to specify this type of anchor, since a graphical widget lies
in the domain of Dexter’s “presentation specifications” and
anchors can not be created in Dexter with respect to these
specifications.

6.2 Virtual Notebook System

The Virtual Notebook System (VNS) was built at the Bay-
lor College of Medicine to support collaborative biomedi-
cal research via distributed hypertext services in a heteroge-
neous computing environment [28]. VNS is implemented by
a set of work group servers (WGSs) distributed throughout
a network. Each WGS is used to store text, graphics, and
link information. Users typically store all their data with the
WGS on their local machine but can also access information
stored on another machine. The VNS Gatekeeper is used
to integrate external tools with VNS, whereby information
from these tools is copied and stored in a WGS. One inter-
esting aspect of VNS is that while users may share data, they
do not share links. Thus two users can see the same page
but view different links. Link information for each user is
stored separately from the data that makes up a page. After
a page is constructed dynamically, a user’s link information
for that page is retrieved and displayed. Chimera is able to
provide this functionality with its link filtering and can go
one step further with its anchor filtering which allows users
to see different anchors on a shared view.

VNS, in contrast to Chimera, requires that all system infor-
mation be stored in a database under its control. Integration
in VNS is concerned with providing the ability to copy in-
formation out of an external tool and into a VNS database.
At that point, the external tool is taken out of the loop; VNS
handles the display of the data from then on. Integration in
Chimera is only concerned with getting a viewer to commu-
nicate with the Chimera server. Chimera makes no attempt
to display a viewer’s objects.

6.3 Sun’s Link Service

Sun’s Link Service (LS) was a commercial product which
defined a protocol for an extensible and loosely coupled hy-
pertext system [25]. An application integrates with the LS
by loading in a library which implements the protocol. This
library allows communication with the LS control process
which facilitates communication between link-aware appli-
cations. Applications provide call-back procedures to the LS
so that they can receive link-related messages. Links are bi-
nary and are stored in a database managed by the LS control
process.

Chimera and the Link Service differ in three aspects. The
LS promotes applications creating anchors on the underlying
object via its data model. Chimera’s anchors are created on a
view of an object, not the object itself. This allows a Chimera

viewer to store anchor information separately from the object
(or objects) to which it refers. Links are hidden in the LS;
that is, an application cannot retrieve links and manipulate
them. This is not the case with Chimera, where links can be
retrieved by an appropriate viewer and displayed in a variety
of ways. This enables the creation of hierarchical hyperwebs.
Finally Chimera’s links aren-ary.

6.4 Hyperform

Hyperform is an approach to creating flexible hyperbase sup-
port based on the notion of extensibility. It is joint work
of the University of Aalborg and the Hypermedia Research
Laboratory [37]. The Hyperform system is a simple frame-
work which provides several built-in classes that perform ba-
sic hyperbase features such as concurrency control, notifica-
tion control, access control, version control, and search and
query. A user of Hyperform takes this initial framework and
extends the built-in classes to produce a hyperbase system
tailored for the hypermedia applications in the user’s envi-
ronment. The object-oriented language used to implement
the Hyperform server is the key to its extensibility and al-
lows for new data objects and methods to be added at run-
time which in turns produces an environment conducive to
rapid prototyping.

The Chimera approach differs greatly from the Hyperform
approach. The authors of Hyperform assert that a fixed hy-
permedia model hinders the development of new tools by
forcing developers to make compromises in their applica-
tions to match the existing model [37]. Thus, the Hyperform
approach has an implicit assumption that developers of hy-
permedia systems want to develop one system for a certain
set of tools and another system for a different set of tools
which require a different hypermedia model. After several
iterations of this approach a user ends up with several hyper-
media systems which we believe could be incompatible with
each other. Thus, objects managed by one of these systems
cannot be linked to objects in another of these systems, and
presumably the effort required to update applications which
use one data model to the other data model is non-trivial.
This implicit assumption is simply not tenable in a software
development environment which is already extremely het-
erogeneous. It seems counter-productive to introduce more
diversity in such an environment with the addition of multi-
ple potentially incompatible hypermedia systems. There is
another assumption here that all of the objects in a hyperme-
dia system are stored in a single database. This assumption
is not valid in a software development environment in which
multiple heterogeneous object management systems can ex-
ist and yet it is desirable to link objects stored in these diverse
object repositories.

Thus Chimera provides a flexible hypermedia model which
was developed specifically for the needs of tools in a software
development environment. This greatly reduces the chance
that a specific tool cannot use the model provided by Chimera

and not be able to participate in a Chimera hyperweb. In fact
Chimera’s hypermedia model was designed with the assump-
tion that Chimera would enter an environment with many
pre-existing tools which would eventually be integrated with
it. Thus the model had to be as flexible as possible.

6.5 Microcosm

Microcosm is an open hypertext system developed at the
University of Southampton [5, 6, 15]. It is a link service that
attempts to keep all aspects of the system such as the hy-
pertext model, the messages passed from applications to Mi-
crocosm, and Microcosm’s response to such messages open
and tailorable. Microcosm-aware applications send selec-
tions and action pairs to the Microcosm Document Control
System (DCS). The DCS sends the message through a chain
of filters which act on the message by blocking it or passing it
on, perhaps modifying it along the way. A special type of fil-
ter is a linkbase which upon finding the source of a link in the
message attaches the destination of the link to the message.
The message emerges from the filter chain into the link dis-
patcher which presents to the user any actions contained in
the resulting message. Microcosm can integrate non-aware
Microcosm viewers through the use of a shared clipboard.
However this is a worst-case situation that is rarely used as
most applications that users want to use with Microcosm con-
tain the hooks needed to integrate with Microcosm. Micro-
cosm has been applied to situations involving several hun-
dred megabytes of information and can handle multiple sets
of links over the same set of data (by swapping in or out var-
ious linkbases in the filter chain).

There are three distinctions between Chimera and Micro-
cosm.

1. Microcosm uses a message-based API while Chimera
uses a multi-lingual programmer’s API. Microcosm
messages are in a tagged ASCII format. Filters act on
tags in the ASCII message that they recognize and ig-
nore all other tags. In addition, each filter can introduce
any tag and its associated data into any message. In con-
trast, the details of Chimera’s message format are hid-
den from Chimera clients by the Chimera API and the
Chimera server by a message ADT. This use of abstrac-
tion allows the Chimera developers to freely change the
format of the messages without affecting the rest of the
system. This allows the message format to be as sim-
ple (ASCII text) or as complex (an Ada variant record)
as needed to effectively support the semantics of the
Chimera API. This freedom to change message formats
is not available in Microcosm but their approach can
potentially integrate more tools into their system since
they do not have to modify each participating tool to use
a programmer’s API. Chimera’s approach to integrating
non-aware viewers is to create a wrapper or proxy pro-
gram which uses both the Chimera API and whatever

mechanism the non-aware viewer has to communicate
with external systems.

2. All Microcosm-aware applications must provide all hy-
pertext functionality via a menu-based interface. While
this promotes a common interaction style between
viewers, it may also prevent some applications (such
as those without a graphical user interface) in partic-
ipating in the system. Chimera does not prescribe or
restrict a viewer’s interface in any way, with the idea
that in a software development environment, develop-
ers will tolerate inconsistency in interface in return for
using a powerful tool within a Chimera hyperweb.

3. Microcosm has no analogous concept for Chimera’s
view concept. Each document in Microcosm has a user-
defined physical type. Each physical type is associated
with one viewer. When a particular document is the des-
tination of a link traversal, Microcosm invokes the as-
sociated viewer on the specified document. Chimera’s
view concept is independent of where a particular data
element is stored. This allows Chimera greater flexi-
bility in handling multiple views of a single object, and
also handles easily the case where a single view consists
of data accessed from multiple sources.

6.6 System Prototype 0, 1, 2, and 3

The Hypermedia Research Laboratory (HRL) at Texas A&M
University has engaged in the building of several hyperme-
dia systems (SP 0-3) since 1991 [19, 21]. At the same time,
the HRL has also built a series of hyperbase systems (HB
0-3) to support the data storage requirements of these hy-
permedia systems [27, 26]. SP3 defines a flexible hypertext
model. Applications manage components which have per-
sistent selections created upon them. These persistent selec-
tions are attached to anchors which are then associated with
links. These links create association sets that are modeled in
the underlying hyperbase.

This matches Chimera’s hypertext concepts fairly well. The
only difference being that multiple persistent selections can
be associated with a single anchor. In Chimera, if the viewer
wanted to associate multiple regions of its view to one anchor
it could do so, but this would necessarily make the mapping
function between anchors and regions of the view more com-
plex. Typically Chimera viewers map one region per anchor,
which would be the equivalent of mapping one persistent se-
lection to anchor in SP3.

A distinctive feature of the HRL work is that anchors and
links are first-class executing programs that can provide a
wide range of run-time semantics. It also allows user inter-
action with hypertext services to be handled by the anchor
and link processes taking this burden off of the client appli-
cations. (This is handled by virtue of the fact that anchors
and links are supplied as classes which have a default set of

behaviors which applications can subclass and modify as de-
sired.) SP3 and HB3 provide a sophisticated environment
that represents a first attempt at providing hypermedia-in-
the-large.

The differences between Chimera and the HRL work are
many. For instance, Chimera is not yet at a state where it
can support multi-user collaboration on a shared hyperweb.
A few additional differences are outlined below.

� Chimera has taken a different approach with respect to
anchors and links. They are objects managed by view-
ers and the Chimera server respectively as opposed to
being first-class processes. This allows for anchors to
be specifically tailored to a viewer while placing a bur-
den on viewer developers to implement this functional-
ity for each new viewer. It allows links to be handled in
a consistent manner at the price of implementing special
link behaviors in the Chimera server.

� SP3 requires applications to use its object manager
(HB3) to store application data; this allows SP3 to sup-
port versioning of application data and hypertext infor-
mation. Chimera, in contrast, places no such restric-
tions on its viewers requiring viewer cooperation to pro-
vide reliable versioning.

� Chimera associates anchors with views, while SP3 as-
sociates anchors with persistent selections which refer
directly to an application’s data. This enables Chimera,
when combined with a viewer mechanism such as Chi-
ron, to provide greater flexibility in displaying an an-
chor, supporting the ability of several viewers (con-
currently) providing different views of the same ob-
ject, where the anchors and their presentation are view-
specific (and this all separated by Chiron from any ap-
plication code). This is similar, though, to SP3’s notion
of a context. In SP3, depending on the context, differ-
ent sets of anchors and links will be made available to
an application displaying the object. Contexts are han-
dled in Chimera through a combined use of attribute-
value pairs and the filtering of anchors and links by the
Chimera server for a particular view.

� SP3 links are not “ordinary” objects and thus anchors
cannot be defined upon them and thereby participate in
hierarchical webs. Thus Chimera appears to have a scal-
ability advantage.

7 Conclusions

In conclusion, Chimera makes a variety of contributions to
software engineering environments and to hypertext tech-
nology, including the simultaneous satisfaction of the re-
quirements described in the introduction. The essence of the
contributions are key concepts and separations of concerns,
provision of an effective set of server capabilities, and the

demonstrated ability to simultaneously satisfy a wide variety
of objectives in a single system.

The concepts and separations include view-specific anchors
and separating object and anchor persistency from link per-
sistency. Viewers define anchors and a hypertext server has
responsibility for management of the links. Allowing view-
ers to define anchors permits a variety of types of anchors
to be defined, and they may be implemented in non-invasive
ways. Neither the database(s) of objects nor the user inter-
face are part of Chimera or its concepts. The concepts are
defined in a media-independent manner and such that scala-
bility is supported.

The Chimera server interface supports multiple, concur-
rent clients written in multiple programming languages and
demonstrates that commercial ”black-box” tools can be inte-
grated (provided they support minimal interprocess commu-
nication).

We have built a prototype system, Chimera, to validate both
the concepts and architecture. In addition, we believe our
approach has value outside of the SDE domain and can aid
such tasks as ethnographic studies and the building of digital
libraries.

Some open, and potentially troublesome, issues with this ap-
proach exist. Since viewers define anchors, and viewers may
be heterogeneous, a lack of consistent user interface to the
hypertext is more likely to occur than not. More troublesome
from the SDE point of view, however, is the observation that
the relations indicated by the hypertext links are in addition
to whatever relations are maintained by the environment’s
object managers. This may yield a number of problems,
including maintaining consistency in the face of change to
the object stores. On the other hand it does not seem re-
alistic to assume the existence of a single object manager
which is responsible for maintaining all relations in an en-
vironment, whether they originate from quick, dynamic, and
user-discretionary hypertext link creation, or careful speci-
fication and design of a complex project’s master database
of strongly-typed artifacts. The broad research issue, in a
heterogeneous world, is determining how to maintain con-
sistency between various relation/link managers. For a near-
term partial solution, one approach we intend to pursue is
the automatic creation (and maintenance) of hyperlinks from
object manager relations; in such a case hypertext style nav-
igation of an OM store would be enabled. It seems much
more problematic to attempt to go the other direction, how-
ever (from hyperlinks to OM relations), because of the limi-
tations of current OM systems. Additional key research ac-
tivities include determining appropriate mechanisms for sup-
porting access controls (so, e.g., a project’s on-line personnel
records are not accessible by those unauthorized), version-
ing, and support for collaborative hyperweb creation.

8 Acknowledgments

The authors would like to acknowledge Jonathan Grudin, Re-
becca Grinter, Leysia Palen, and Hadar Ziv for reading an
early draft of this paper and providing comments, the review-
ers for their helpful suggestions, and Hugh Davis and Wendy
Hall for providing detailed information about the Microcosm
link service. In addition, the authors’ gratitude is extended to
the students in the software engineering project course whose
experiences fine-tuned Chimera and helped explore issues of
integration with existing software.

References

[1] V. R. Basili and B. T. Perricone. Software Errors and
Complexity: An Empirical Investigation.Communica-
tions of the ACM, 27(1):42–52, January 1984.

[2] G. Boudier, F. Gallo, R. Minot, and I. Thomas. An
overview of pcte and pcte+.SIGSOFT Software En-
gineering Notes, 13(5), November 1988.

[3] J. Conklin. Hypertext: An introduction and survey.
IEEE Computer, 20(9):17–41, September 1987.

[4] M. L. Creech, D. F. Freeze, and M. L. Gris. Using Hy-
pertext in Selecting Reusable Software Components. In
Proceedings of Hypertext’91, San Antonio, Texas, De-
cember 1991.

[5] H. Davis, W. Hall, I. Heath, G. Hill, and R. Wilkins.
Towards an Integrated Information Environment with
Open Hypermedia Systems. InProceedings of the
ACM Conference on Hypertext, Milano, Italy, Novem-
ber 1992.

[6] H. Davis, S. Knight, and W. Hall. Light Hypermedia
Link Services: A Study of Third Party Application In-
tegration. InProceedings of the ACM Conference on
Hypertext, Edinburgh, Scotland, September 1994.

[7] N. Delisle and M. Schwartz. Neptune: A hypertext sys-
tem for CAD applications. InProceedings of the ACM
SIGMOD’86, pages 132–142, Washington, DC, May
1986.

[8] C. Fernström, K.-H. Närfelt, and L. Ohlsson. Software
factory principles, architecture, and experiments.IEEE
Software, 9(2):36–44, March 1992.

[9] J. C. Ferrans, D. W. Hurst, M. A. Sennett, B. M. Cov-
not, W. Ji, P. Kajka, and W. Ouyang. HyperWeb: A
Framework for Hypermedia-Based Environments. In
Proceedings of ACM SIGSOFT ’92: Fifth Symposium
on Software Development Environments, Washington
D.C., December 1992.

[10] P. K. Garg and W. Scacchi. A Hypertext System to
Manage Software Life-Cycle Documents.IEEE Soft-
ware, 7(3):90–98, May 1990.

[11] F. Garzotto, P. Paolini, and D. Schwabe. HDM - A
Model for the Design of Hypertext Applications. In
Proceedings of Hypertext’89, Pittsburgh, Pennsylva-
nia, November 1989.

[12] K. Grønbaek and R. H. Trigg. Design Issues for a
Dexter-based Hypermedia System.Communications of
the ACM, 37(2):40–49, February 1994.

[13] F. Halasz and S. Mayer. The Dexter Hypertext Refer-
ence Model.Communications of the ACM, 37(2):30–
39, February 1994.

[14] F. G. Halasz. Reflections on Notecards: Seven Issues
for the Next Generation of Hypermedia Systems.Com-
munications of the ACM, 31(7):836–852, July 1988.

[15] W. Hall, G. Hill, and H. Davis. The Microcosm Link
Service: A Technical Briefing. InProceedings of Hy-
pertext’93, Seattle, Washington, November 1993.

[16] L. Hardman, D. C. Bulterman, and G. van Rossum.
The Amsterdam Hypermedia Model: Adding Time and
Context to the Dexter Model.Communications of the
ACM, 37(2):50–62, February 1994.

[17] K. L. Heninger. Specifying software requirements for
complex systems: New techniques and their applica-
tion. IEEE Transactions on Software Engineering, SE-
6(1):2–13, January 1980.

[18] D. L. Hicks, J. J. Leggett, and J. L. Schnase. Version
Control in Hypertext Systems. Report TAMU HRL-91-
004, Texas A&M University, July 1991.

[19] C. J. Kacmar and J. J. Leggett. PROXHY : A Process-
Oriented Extensible Hypertext Architecture.ACM
Transactions on Information Systems, 9(4):399–419,
October 1991.

[20] R. Kadia. Issues encountered in buildinga flexible soft-
ware development environment: Lessons learned from
the Arcadia project. InProceedings of ACM SIGSOFT
’92: Fifth Symposium on Software Development Envi-
ronments, Tyson’s Corner, Virginia, December 1992.

[21] J. J. Leggett and J. L. Schnase. Viewing Dexter with
Open Eyes. Communications of the ACM, 37(2):77–
86, February 1994.

[22] D. Lucarella, S. Parisotto, and A. Zanzi. MORE: Mul-
timedia Object Retrieval Environment. InProceedings
of Hypertext’93, Seattle, Washington, November 1993.

[23] M. J. Maybee, D. H. Heimbinger, D. L. Levine, and
L. J. Osterweil. Q: A multi-lingual interprocess com-
munications system for software environment imple-
mentation. Submitted for publication, 1992.

[24] J. Nielsen. Hypertext and Hypermedia. Academic
Press, Inc., San Diego, California, 1990.

[25] A. Pearl. Sun’s Link Service: A Protocol for Open
Linking. In Proceedings of Hypertext’89, Pittsburgh,
Pennsylvania, November 1989.

[26] J. L. Schnase.HB2: A Hyperbase Management Sys-
tem for Open, Distributed Hypermedia System Archi-
tectures. PhD thesis, Texas A&M University, College
Station, Texas, August 1992.

[27] J. L. Schnase, J. J. Leggett, and D. L. Hicks. HB1: Ini-
tial Design and Implementation of a Hyperbase Man-
agement System. Technical Report TAMU-HRL 91-
003, Hypertext Research Lab, Texas A&M University,
October 1991.

[28] F. M. Shipman, III, R. J. Chaney, and G. A. Gorry.
Distributed Hypertext for Collaborative Research: The
Virtual Notebook System. InProceedings of Hyper-
text’89, Pittsburgh, Pennsylvania, November 1989.

[29] J. B. Smith and F. D. Smith. ABC: A Hypermedia Sys-
tem for Artifact-Based Collaboration. InProceedings
of Hypertext’91, San Antonio, Texas, December 1991.

[30] D. Steinberg and H. Ziv. Software Visualization and
Yosemite National Park. InProceedings of the Twenty-
Fifth Annual Hawaii International Conference on Sys-
tem Sciences, January 1992.

[31] N. Streitz, J. Haake, J. Hannemann, A. Lemke,
W. Schuler, H. Sch¨utt, and M. Thüring. SEPIA: A Co-
operative Hypermedia Authoring Environment. InPro-
ceedings of the ACM Conference on Hypertext, Milano,
Italy, November 1992.

[32] P. Tarr and L. A. Clarke. Pleiades: An Object Manage-
ment System for Software Engineering Environments.
In ACM SIGSOFT ’93: Proceedings of the Symposium
on the Foundations of Software Engineering, Los An-
geles, California, December 1993.

[33] R. N. Taylor and G. F. Johnson. Separations of con-
cerns in the Chiron-1 user interface development and
management system. InProceedings of the Conference
on Human Factors in Computing Systems, pages 367–
374, Amsterdam, April 1993. Association for Comput-
ing Machinery.

[34] R. N. Taylor, K. A. Nies, G. A. Bolcer, C. A. MacFar-
lane, G. F. Johnson, and K. M. Anderson. Separations
of concerns in the Chiron-1 user interface development
and management system. UCI–ICS Technical Report
TR-94-12, Department of Information and Computer
Science, University of California, Irvine, March 1994.

[35] I. Thomas. Tool Integration in the Pact Environment. In
Proceedings of the Eleventh International Conference
on Software Engineering, Pittsburgh, PA, May 1989.

[36] W. F. Tichy. Design, implementation, and evaluation
of a revision control system. InProceedings of the
Sixth International Conference on Software Engineer-
ing, pages 58–67, Tokyo, Japan, September 1982.

[37] U. K. Wiil and J. J. Leggett. Hyperform: Using Ex-
tensibility to Develop Dynamic, Open and Distributed
Hypertext Systems. InProceedings of the ACM Con-
ference on Hypertext, Milano, Italy, November 1992.

