Temporal Logic

- In classical logic, a predicate’s truth value is static; for a given interpretation it is always true or always false
- In real-life situations, implications are causal
 - if P and P → Q then Q
 - We need P to be true at one point, then if an event causes P → Q to be true, then at the next point, we need P to be false and Q to be true
 - Think of it in terms of states. S1: P is true, S2: Q is true

Example

- P: “the train is approaching the gate”
- P → Q: “if the train approaches the gate, the gate is lowered”
- Q: “the gate is lowered before the train is in the gate
- R: “the gate remains closed until the train crosses the gate”
- We cannot formalize these statements in propositional or predicate logic
Concurrent and Reactive Systems

• A reactive program is one that continuously maintains an ongoing interaction with the environment controlled by it.
 – Reactive systems may be concurrent and may have to obey strict timing constraints
 – For example, “train approaching gate” and “gate lowering” are concurrent activities

Relevant properties

• safety: “something bad will not happen”
 • Example
 – “the gate will remain closed while a train crosses the gate”
 • safety properties
 – partial correctness
 – mutual exclusion
 – deadlock-freedom

• liveness: “something good will eventually happen”
 • Example
 – “whenever the gate is directed to raise, it will eventually do so”
 • liveness properties
 – program termination
 – starvation-freedom

Notions of Time

• Underlying model for time must match the system’s requirements
• Temporal logic does not try to define time, only operators that denote change and ordering
• Types of Time
 – Discrete or Continuous
 – Linear and Branching

Discrete or Continuous

• When operations are continuously varying, a dense model of time is appropriate
 – The topology of time in this instance is typically a proper subset of real numbers
• If properties are only present at certain time instants, then a discrete model of time is chosen
 • In this case, the topology is mapped into a subset of the natural numbers
• These models can be bounded and can also be broken into distinct intervals
Linear and Branching Time Models

• for any given moment in time
 – one may postulate one future time (linear) or
 several possible future times (branching)
• branching
 – useful for modeling uncertainty
 (i.e. alternatives can be considered)
• We are going to study discrete linear
 temporal logic

The specification hierarchy

• Temporal logic can be used to specify
 requirements, design, and programs
 – Requirements
 • behavior model; time constraints between predicates
 – Design
 • state changes within objects can be specified
 – Programs
 • state changes for entire programs

Common techniques

• After an object’s state is specified
 – Specify formulas for properties that hold over
 • (a) all sequences of all states
 • (b) some sequence of states
 • (c) some future state in some sequence of states
• With respect to program states
 – Temporal logic formulas can specify properties
 • that hold over (subsets of) executions of the program

Temporal Logic: Syntax

• Vocabulary
 – constants, functions, propositions, states, and predicates
• It also includes
 – constant values
 • boolean constants, natural numbers,
 \(\varepsilon \) (empty string or list), \(\emptyset \) (empty set)
 – function symbols
 • \(+, -, \cup, \cap \)
 – predicate symbols
 • \(>, \leq, \subset, \in \)
Syntax and Semantics, continued

• = (assumed defined for all types)
• A well-formed formula of predicate logic is also a well-formed formula of temporal logic
 – Temporal Logic adds
 • a sequence of states: S_1, S_2, \ldots, S_n
 • a function that assigns to each state, a set of predicates that are true for that state
 – Temporal Logic defines three new operators
 • \Box (always), \Diamond (eventually), and \Diamond (next)

Syntax and Semantics, continued

• Additional Well-Formed Formula Rules
 – If f is a well-formed formula, then so are
 • $\neg(f)$, $\Box(f)$, $\Diamond(f)$, and $\Diamond(f)$
 – If f and g are well-formed formulas, then so are
 • $(f \land g)$, $(f \lor g)$, $(f \rightarrow g)$, and $(f \equiv g)$

• Examples
 – $\Box(f \Diamond(g))$
 – $\exists q \cdot (\text{head}(s) = q) \land \Diamond(\text{head}(s) = q + 1)$
 – $\Box(p) \land \Diamond(q) \Rightarrow \Box(p \Rightarrow \Diamond(r))$

Types of Temporal Logic

• Use of only propositions
 – propositional linear temporal logic
• Use of quantifiers and predicates
 – first-order linear temporal logic

Interpretation of Temporal Logic

• An atomic action causes a state change
• A state history is notated:
 – $\sigma : S_1, S_2, \ldots, S_n$
 – It represents the behavior of an object.
 • These states can correspond to either abstract object states in a design or to concrete states in a program.
 – In order to verify whether the behavior has a property as represented by a formula f, we interpret the formula over the given state history.
Interpretation, continued

- The value of a variable (expression, predicate, ...) for a given state is notated
 - $s[x]$, $s[e]$, $s[p]$, $s[f]$

- To evaluate formulas without temporal operators
 - Step 1: evaluate expressions
 - Assign values to all free variables
 - Step 2: evaluate predicates
 - For a predicate $P(t_1, t_2, ...)$, define $s[P] = P(s[t_1], s[t_2], ...)$
 - For formulas, $s[\neg p] = \neg s[p]$, $s[p \land q] = s[p] \land s[q]$, etc.

Interpretation, continued

- To evaluate formulas without temporal operators
 - Step 3: evaluate quantified formulas
 - $s[\forall x \cdot p] = \forall x \cdot s[p]$
 - $s[\exists x \cdot p] = \exists x \cdot s[p]$

- Example
 - state $s = (x=-1, y=3, z=1)$
 - formula $(x+y>z) \Rightarrow (y \leq 2 \cdot z)$
 - $s[(x+y>z) \Rightarrow (y \leq 2 \cdot z)]$
 - $(s[x]+s[y]>s[z]) \Rightarrow (s[y] \leq 2 \cdot s[z])$
 - $=(-1 + 3 > 1) \Rightarrow (3 \leq 2 \cdot 1)$
 - $=(true \Rightarrow false)$ (This expression thus evaluates to false for state s)

Semantics of Temporal Formulas

- $\Box P$
 - P always hold
 - $\Box P$ holds at S_j if P holds at all states S_k, $k \geq j$
- $\diamond P$
 - P holds sometimes
 - $\diamond P$ holds at S_j if P holds at some state S_k, $k \geq j$
- $\bigcirc P$
 - P holds at the next instant
 - $\bigcirc P$ holds at S_j if P holds at state S_{j+1}

Examples

- $\Box (\text{lost}(x) \Rightarrow \neg \text{instacks}(x))$
 - A lost book is not on the stacks
- $\Box (\text{inc}(x) \Rightarrow \Box \text{inc}(x))$
 - Once x is incremented, then it is incremented in every state thereafter
- $\bigcirc \Box (x = 1) \Rightarrow (\diamond \Box (y = 0) \land \diamond (z = 1))$
 - If at the next step, x becomes permanently 1, then eventually y becomes permanently zero and z eventually becomes 1
Returning to the Train example

- Propositions
 - G1: the gate is lowered
 - G2: the gate is closed
 - G3: the gate is raised
 - G4: the gate is open
 - T1: the train is approaching
 - T2: the train is crossing the gate
 - T3: the train has crossed the gate

Train example, continued

- Assume
 - \(\sigma): S0, S1, \ldots \) where
 - S0: G1 \(\land \) T1 is true (Gate is lowered)
 - S1: G2 \(\land \) T1 is true (Gate is closed)
 - S2, S3: G2 \(\land \) T2 is true (Train is crossing)
 - S4: G2 \(\land \) T3 is true (Gate is closed)
 - S5: G3 \(\land \) T3 is true (Gate is raised)
 - S6, \ldots : G4 \(\land \) T3 is true (Gate is open)

Train example, continued

- We can conclude the following
 - \(\Diamond (G2) \) is true for states 0, 1, 2, 3, 4; otherwise not
 - \(\Box (G2) \) is true for states 0, 1, 2, 3; otherwise not
 - \(\Box (G4) \) is false for states 0-5, and true thereafter
 - \(\Box (T3) \Rightarrow \Diamond (G4) \)
 - The gate will eventually open, after the train has crossed
 - \(\Box \Diamond (G4) \)
 - There are an infinite number of states where the gate is open
 - \(\Diamond \Box (\neg T1 \Rightarrow G4) \)
 - There exists a state where the proposition holds for all later states

Additional Temporal Operators

- Until
 - P holds continuously at least until the first occurrence of Q
- Waiting-For
 - P holds forever or until the first occurrence of Q
- Since
 - Q has happened at sometime in the past and P has continuously held ever since
- Once
 - P has happened at sometime in the past
- I don’t have the correct font for the symbols of these operations, instead I will use their name in place of their symbol in formulas
Frequently used Formulas

• $f \Rightarrow \Diamond g$
 – If f at one state, then eventually g

• $\Box (f \Rightarrow \Diamond g)$
 – Holds for all states

• $\Box (f \Rightarrow \Box g)$
 – If f is true at state n, then g is true in state $n+1$, f is true at state 0

• $\Box (f \Rightarrow f \text{ Until } g)$
 – Where f is true, f continues to remain true until g becomes true

• $\Box (f \Rightarrow \text{ Once } g)$
 – In every state where f is true, it was preceded by a state where g is true

Examples

• We will now work through some examples on paper
 – Library Books
 – Communication Channels
 – A thread-safe queue