
A HISTORY OF SOFTWARE 
ENGINEERING RESEARCH

for CSCI-5828, Spring Semester
Prepared by Bradley Cooper

1



Executive Summary
Software Engineering Research

   Software consists of “the programs and other operating information use by a 
computer.”  And the term Engineering is defined by Merrium-Webster as “the 
application of science and mathematics … [towards] the design and 
manufacture of complex products.”
   The IEEE defines Software Engineering as:

   The term Software Engineering was first coined at the ‘NATO Software 
Engineering Conference’ in 1968.  But, in reality, people have been ‘engineering’ 
software further back than that.
   This presentation hopes to outline a brief history of the development of 
Software Engineering from the early days of the 20th century, to today.  Taking a 
quick look at the hardware, concepts, methods and drives along the way.

“The Application of systematic, Disciplined, Quantifiable 
Approach to the Development, Operation and Maintenance of 
Software; that is, the application of engineering to software.”
                                  - IEEE, Definition of Software Engineering

2



Presentation Goals

I. Intro Software Engineering
II. Early Hardware
III. Programming Languages 

i. The Why
ii. Early Languages
iii. Object Orientation

IV. Operating Systems
i. Overview
ii. OS/360
iii. UNIX and Beyond

V. Software Crisis

i. NATO Conference
ii. Silver Bullet 

VI. Development Life Cycles
i. Traditional 
ii. Agile

VII. Changing Environments
i. Micro Computer
ii. Distributed Systems
iii. The Internet

VIII. Recap
IX. Further Reading

3



HARDWARE

Z3

Atanasoff-BerryENIAC

4



ATANASOFF-BERRY COMPUTER

• First Operational in 1937 (tested 1942)
• Claim to Fame:

• First ‘Electronic Digital Computing Device’
• Designers:

• John Atanasoff and Clifford Berry
• Affiliation:

• Iowa State College
(now Iowa State University)

• Intent:
• Linear equation solver

• Basic Specs:
• Binary Arithmetic
• Vacuum Tubes
• Regenerative Capacitive Memory
• Not programmable

5



Z3

• First Operational in 1941
• Claim to Fame:

• First Programable ‘Complete’ Computer
• Designers:

• Konrad Zuse
• Affiliation:

• ZUSE Apparatebau (German company)
• German Government

• Intent:
• Wing Flutter Calculations

• Basic Specs:
• Binary Arithmetic
• Electromechanical Relays
• External Program Storage (tape)
• Programmable

6



COLOSSUS

• First Operational in 1943
• Claim to Fame:

• First Electronic, Digital and Programmable 
Computer

• Designer:
• Tommy Flowers (& others)

• Affiliation:
• Post Office Research Station
• British Government

• Intent:
• Cryptanalysis of German Communications

( During World War II )
• Basic Specs:

• Binary Arithmetic
• Thermionic Valves (vacuum tubes)
• Programmable

<- German Lorenz
Encryption

Machine

7



ENIAC

• First Operational in 1946
• Claim to Fame:

• First ‘Designed’ for Turing-Complete 
Electronic Digital Computer

• Designer:
• John Mauchly, J. Presper Eckert

• Affiliation:
• United States Government

• Intent:
• Artillery Firing Tables, 

• Basic Specs:
• Decimal Arithmetic
• Thermionic Valves (vacuum tubes)
• Programmable

8



PROGRAMMING LANGUAGES
9



A NEED FOR PROGRAMMING 
LANGUAGES

• Initially, if you or the institution you 
were part of desired to solve a 
problem with computers, you 
would design a machine that 
would be specifically tailored to 
solve that task.

• Even early on, the complexity of 
systems like ENIAC would require 
teams of technicians weeks to 
reprogram.

• Programming languages offered a 
level of abstraction that let the 
programmer step back, making 
the act of programming more 
straightforward and accessible.

10



LEVELS OF ABSTRACTION

• Low-Level Languages
(low abstraction)

• Machine Code
• Code that is directly interpreted by the processor of a machine
• Deals most directly with hardware

• Assembly
• Typically regarded as low-level
• Still hardware specific

• High-Level Languages
(high abstraction)
• High level languages make it possible to use natural language elements in 

programming.
• Also, they are more portable.
• For example, UNIX written in assembly in 1970 and was rewritten in C in 

1972, making it as portable as the C programing language.

11



• High-level programming languages 
began to show up on the scene in the 
1950s

• FORTAN
• Began at IBM in 1953, FORTRAN 

delivered the first compiler (and all 
associated materials) by 1957.

• Used for Numerical Computation and 
Scientific Computing

• Programmers were initially skeptical 
of this high-level language, until the 
benefits were made clear in the form 
of efficiency gains

EARLY LANGUAGES

12



EARLY LANGUAGES

• Lisp
• Second of the early high-level 

languages, Lisp was developed to be 
a practical mathematical language

• Popular dialects are Scheme, 
Common Lisp and Clojure

• ALGOL
• Built in 1958, ALGOL was in some 

ways a response to FORTRAN
• It would later influence many 

languages, including Pascal and C
• COBOL

• Designed for Business in 1959
• COBOL 2002 was the most recent 

release

13



OBJECT ORIENTED PROGRAMING

• Object oriented aspects have been 
built into various languages from the 
late 50s on

• However, the first primary featured 
object oriented language is considered 
to be Simula, developed in 1967

• Object-oriented properties help to 
further the abstract qualities 
programming languages.

• In general, object oriented practices 
contribute to software engineering the 
ability to encapsulate and modularize 
complex functionality.

• Inheriting from other objects and a 
focus on code reuse are cornerstones

JAVA - DUKE

14



OPERATING SYSTEMS

Mac OS

Windows UNIX

OS/360

15



OPERATING SYSTEM OVERVIEW

• With the development of more and 
more complex systems of software, 
users needed a better way to 
interact with their systems

• GM was arguably the first company 
to construct their own operating 
system in 1956, calling it GM-NAA 
I/O, for their IBM 704.

• Most mainframe users tended to 
construct their own OS, typically for 
each system in use.

• IBM’s OS/360, sold from 1964 to 
1978, was one of the first operating 
systems that separated architecture 
and implementation.

16



OS/360

• The OS/360 line of computers and 
operating systems made it possible, 
to write applications capable of 
being run on multiple systems

• OS/360 also represented one of the 
largest and most ambitious software 
engineering projects of all time

• At it’s peek, more than 1000 
employees worked on the project, 
and IBM spent nearly half a billion 
dollars in development

• Fred Brooks would later publish his 
famous book “The Mythical Man-
Month” on his experience managing 
the project

17



UNIX AND BEYOND

• In 1970, Unix was written by engineers 
at Bell Labs

• However, the 1958 antitrust settlement 
forbad AT&T from entering the 
computer industry

• Unix began being licensed copiously.
• Unix has found it’s way into many 

applications from Government, 
Educational models and modern 
operating systems (Mac OS X, iOS, 
Linux)

• Unix, Windows and other Unix-based 
operating systems have come to form 
the basis of our modern software 
infrastructure.

18



SOFTWARE CRISIS

OS/360 System ChartNATO

19



Software Crisis

• As computer hardware functionality and complexity continued to progress in 
leaps and bounds, it became clear that the number one problem associated 
with so much powerful hardware is the software.

• NATO convened the 1968 Software Engineering Conference.

• Delegates discussed several resultants due to hardware complexity and 
software development difficulties:
• Project over-runs
• Budget over-runs
• Low quality, and many more

• At the time of the crisis, the OS/360 system had just been completed, one 
year and many millions of dollars over budget

• It was clear then, and in the next several years, that methods were needed

20



SILVER BULLET

• For many years after the NATO 
conference, much of Software 
Engineering and Computer Science 
became about finding that one 
technique to fix all the problems

• Fred Brooks called the ‘fixer’ a Silver 
Bullet in his 1986 paper “No Silver 
Bullet”

• Brooks claims that there is no easy fix 
that will solve all the computer 
engineering problems

• His contention, is that as a whole, our 
myriad techniques will add up to 
advances of large factors, but most 
likely no ONE thing will do it quickly 

21



DEVELOPMENT LIFE CYCLES
22



TRADITIONAL LIFE CYCLES

• Software Life Cycles offer several 
benefits:

• Metrics with which to judge system 
progress

• Tools to help estimate time per task
• Aspects of the process that can be 

reused or avoided in the future
• Most life cycles use forms of the same 

5 steps (previous slide), but differ on 
emphasis or repetition of those steps

• Here are a few (of many) life cycles
• Code and Fix
• Waterfall
• eXtreme Programming (XP)

A LITTLE LIKE THIS, 
BUT WITH SOFTWARE

23



Build First 
Version

Modify Until 
Satisfied

Operational

Retirement

CODE AND FIX

• Code and fix is by far the 
easiest method of producing 
small programs

• Major problems arise however 
if any reasonable amount of 
complexity is involved

• It’s also fairly difficult to 
distribute a project amongst a 
group with this model.

24



Design
 

Verify

Requirements
 

Verify

Operational

Retirement

Implementation
 

Test

Requirement 
Change

WATERFALL

• The Waterfall method was introduced 
in the 1970s

• One of the earliest software design life 
cycles (some evidence points to the 
Waterfall method being around even 
earlier, 1950s)

• Originally, the Waterfall method lacked 
feedback systems, this flow chart adds 
in feedback to all major portions of the 
process

• Modeled after the manufacturing and 
construction life cycles, where 
modifications late in the game are cost 
prohibitive (hence no feedback)

• Still in wide use

25



EXTREME PROGRAMMING

• Extreme programming is a type of 
‘Agile’ approach (more in a minute)

• Extreme programming tries to 
incorporate as many iterations and 
feedback loops as possible in hopes of 
tuning the system as accurately as 
possible

• Created by Kent Beck in 1996
• Extreme programming employs some 

unique, yet effective programming 
techniques:

• Pair Programming
• Code Clarity
• Flat Management
• Many more 

26



Agile

• Agile is almost a state of mind with which to approach software engineering 
and development

• It leaves behind the heavy document driven, ‘industrial strength’ life cycles of 
industry, and focuses on customer interactions and delivering software

• But not just delivering software, but delivering the RIGHT software by 
communicating with the customer

• Agile methods focus on a small, iterative approach to software development.

• Agile even goes so far as to encourage having a Customer as an active 
member of the design and development team

• Developed in 2001 by many leaders in the field of software engineering and 
development, Agile hopes to provide a new and effective approach

• Please see the next slide for a clipping from the Agile Manifesto Homepage

27



AGILE MANIFESTO

CLIPPING FROM THE AGILE MANIFESTO HOME PAGE, CLICK IMAGE FOR LINK

28



CHANGING ENVIRONMENTS

Olivetti P6060

2005 Partial IP Rendering of the Internet

Guangzhou Supercomputing Center

iPad 3

29



MICROCOMPUTERS AND THE PC

• First appearing in the 1970s, 
microcomputers put computers in the 
hands of hobbyists

• Finally, the ‘average man’ could afford 
a computer, which of course pushed 
software engineering and 
development, often from both ends

• The availability of hobby systems soon 
gave rise to enthusiasts and 
entrepreneurs (ie Steve Jobs, Bill 
Gates) who’s companies would at 
times drive and be driven by the 
software engineering industry

30



DISTRIBUTED SYSTEMS AND THE 
INTERNET

• The advent of the Internet and the 
personal computer revolution, further 
drove the Software Engineering 
profession

• With the interchange of media, gaming, 
cloud storage; people demanded (and 
continue to demand) capable software 
systems

• Distributed and multicore systems also 
drive the speed and complexity of new 
software engineering projects

• New methods of development are now 
possible, such as Follow-the-Sun 
‘global’ workflows of program 
development.

31

NeXT Web Server



Fur ther Reading

SWEBOK
 Online “Guide to The Software Engineering Body of 
Knowledge”

National Museum of Computing
	 	 Online resources for the British national Museum of 

Computing
IEEE Milestones
	 	 Online listing all of the official IEEE Milestones and 

supplemental text

32


