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Semester Wrap-Up

CSCI 5828: Foundations of Software Engineering
Lecture 03 — 05/03/2012
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Goals

• Present a review of the topics covered in class this semester
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Four Main Topics

• Software Engineering Fundamentals

• Software Life Cycles

• Agile philosophy and techniques

• Software Testing

• Behavior and Test Driven Development

• Software Concurrency

• Design and Implementation of Concurrent Software Systems

3



© Kenneth M. Anderson, 2012

SE Fundamentals (I)

• What is Software Engineering

• Software engineering is that form of engineering that applies…

• a systematic, disciplined, quantifiable approach,

• the principles of computer science, design, engineering, management, 
mathematics, psychology, sociology, and other disciplines…

• to creating, developing, operating, and maintaining cost-effective, reliably 
correct, high-quality solutions to software problems. (Daniel M. Berry)

• Fred Brooks’s No Silver Bullet

• Progress will be made on software engineering in terms of our ability to be 
produce high quality software on time and under budget

• But it will be hard work!  No one technique is going to “save us”
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SE Fundamentals (II)

• Overview of Software Life Cycles

• In SE, Process is King!

• Examined transition and differences between traditional waterfall 
methods and more recent agile approaches

• Overview of Software Testing

• Errors, Faults, and Failures

• Black box, gray box, and white box

• Folding and Sampling

• Test Driven Development
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SE Fundamentals (III)

• Overview of Concurrency

• Why the design of concurrent software systems is important

• Chips are getting “wider” not faster

• But concurrency is hard

• race conditions, deadlock, etc.

• It’s especially hard if you continue to do concurrency the way we’ve 
always done it

• Shared mutability, low-level threading primitives, locks

• We then examined higher-level abstractions that avoid these problems
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Agile (I)

• A software development philosophy and a set of practices

• that values

• communication over process

• communication over documents

• communication over tools

• <do you notice a pattern?>

• and advocates a set of practices that help developers embrace the fact 
that change in software development is inevitable

• Don’t hide from it!
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Agile (II)

• Specific Techniques

• Agile Inception Deck: Make sure the team and the customer are aligned

• User Stories

• Iteration Plan

• Burn-Down Charts

• Test Driven Development

• Continuous Integration

• Configuration Management
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Software Testing

• Test Automation Frameworks

• Cucumber as the example

• How to get your customer to write tests

• How to maintain separation between

• test code and the system under test

• Examined strategies for keeping test code abstract

• while underneath via glue code the system under test could grow

• from simple model code to full fledged system with UIs, web 
services, etc.
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Concurrency

• Fairly broad coverage of concurrency techniques at the individual system 
level

• Typical threading primitives and the problems associated with them

• java.util.concurrent

• notion of separation of thread and task

• and the need for a thread allocation strategy

• Styles of Concurrency: shared mutability, isolated mutability, ...

• “New” concurrency models

• Software Transactional Memory, Agent Model, Grand Central Dispatch
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Two Aspects of Concurrency Not Explored

• A Multi-Process Approach to Concurrency

• With this approach your “system” is a bunch of individual programs where

• each individual program is single threaded and thus easier for 
developers to understand and maintain

• concurrent operation comes from the fact that the operating system will 
run these processes at the same time on different cores

• coordination occurs via inter-process communication or via the file 
system

• MapReduce

• can be done in individual programs but also enables large scale 
distribution of computation across clusters of machines
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MapReduce
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MapReduce

• To understand MapReduce, we must first talk about functional programming

• We encountered functional programming when we looked at Clojure in the 
context of STM and in our discussions of pure immutability

• Functional programming is an approach to programming language design in 
which functions are

• first class values (with the same status as int or string)

• you can pass functions as arguments, return them from functions and 
store them in variables (as we saw with blocks in GCD)

• and have no side effects

• they take input and produce output

• this typically means that they operate on immutable values
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Example (I)

• In python, strings are immutable

• a = “Ken @@@”

• b = a.replace(“@”, “!”)

• b

• 'Ken !!!'

• a

• 'Ken @@@'

• Replace is a function that takes an immutable value and produces a new 
immutable value with the desired transformation; it has no side effects
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Example (II)

• Functions as values (in python)

• def Foo(x, y):

• return x + y

• add = Foo

• add(2, 2)

• 4

• Here, we defined a function, stored it in a variable, and then used the “call 
syntax” with that variable to invoke the function that it pointed at
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Example (III)

• continuing from previous example

• def DoIt(fun, x, y): return fun(x,y)

• DoIt(add, 2, 2)

• 4

• Here, we defined a function that accepts three values, some other function 
and two arguments

• We then invoked that function by passing our add function along with two 
arguments ;

• DoIt() is an example of a higher-order function: functions that take 
functions as parameters

• Higher-order functions are a common idiom in functional programming
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Relationship to Concurrency?

• How does this relate to concurrency?

• It leads naturally to the pure immutability style of concurrent design

• Each thread operates on immutable data structures using functions 
with no side effects

• A thread’s data structures are not shared with other threads

• Work is performed by passing messages between threads

• If one thread requires data from another, that data is copied and then 
sent

• As we’ve seen, such an approach allows each thread to act like a single-
threaded program; no danger of interference
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Map, Filter, Reduce

• Three common higher order functions are map, filter, reduce

• map(fun, list) -> list

• Applies fun() to each element of list; returns results in new list

• filter(fun, list) -> list

• Applies boolean fun() to each element of list; returns new list containing 
those members of list for which fun() returns True

• reduce(fun, list) -> value

• Returns a value by applying fun() to successive members of list (total = 
fun(list[0], list[1]); total = fun(total, list[2]); …)
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Examples

• list = [10, 20, 30, 40, 50]

• def double(x): return 2 * x

• def limit(x): return x > 30

• def add(x,y): return x + y

• map(double, list) returns [20, 40, 60, 80, 100]

• filter(limit, list) returns [40, 50]

• reduce(add, list) returns 150
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Implications

• map is very powerful

• especially when you consider that you can pass a list of functions to it and 
then pass a higher-order function as the function to be applied

• for example

• def DoIt(x): return x()

• map(DoIt, [f(), g(), h(), i(), j(), k()])

• But the real power, with respect to concurrency is that map is simply an 
abstraction that can, in turn, be implemented in a number of ways
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Single Threaded Map

• We could for instance implement map() like this:

• def map(fun, list):

• results = []

• for item in list:

• results.append(fun(item))

• This would implement map in a single threaded fashion
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Multi-threaded Map

• We could also implement map like this (pseudocode):

• def Mapper(Thread):

• def __init__(… fun, list): …

• def run():

• self.results = map(fun, list)

• def xmap(fun, list):

• split list into N parts where N = number of cores

• create N instances of Mapper(fn, list_i)

• wait for each thread to end (in order) and grab results

• append thread results to xmap results

• return xmap results
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Super Powerful Map

• We could also implement map like this:

• def supermap(fun, list):

• divide list into N parts where N equals # of machines

• send list_i to machine i which then invokes xmap

• wait for results from each machine

• combine into single list and return

• Given this implementation, you can apply a very complicated function to a 
very large list and have (potentially) thousands of machines leap into action to 
compute the answer
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Google

• Indeed, this is what Google does when you submit a search query:

• def aboveThreshold(x): return x > 0.5 <-- just making this up

• def probabilityDocumentRelatedToSearchTerm(doc): …

• searchResults =

• filter(aboveThreshold,

• map(probabilityDocumentRelatedToSearchTerm,

• [<entire contents of the Internet]))
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Difference between map and xmap?

• The team behind Erlang published results concerning the difference between 
map and xmap

• They make a distinction between

• CPU-bound computations with little message passing vs.

• lightweight computations with lots of message passing

• With the former, xmap provides linear speed-up (10 CPUs provides a 10x 
speed-up, then declining) over map

• the latter less so (10 CPUs provided 4x speed-up)

• Indeed, xmap’s performance in the latter case tends to max out at 4x no 
matter how many CPUs were added
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How Projects Really Work

• Our last lesson for the semester involves insight into how software 
development projects REALLY work

• Taken from www.projectcartoon.com
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How Projects Really Work
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How Projects Really Work (version 1.0) Create your own cartoon at www.projectcartoon.com
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explained it

How the project leader
understood it

How the analyst
designed it

How the programmer
wrote it

How the business
consultant described it

How the project was
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installed

How the customer was
billed

How it was supported What the customer really
needed

www.project
cartoon.com
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Coming Up Next

• Summer! Have a good one!
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