Semester Wrap-Up

CSCI 5828: Foundations of Software Engineering
Lecture 03 — 05/03/2012

© Kenneth M. Anderson, 2012



(Goals

® Present a review of the topics covered in class this semester

© Kenneth M. Anderson, 2012



Four Main Topics

e Software Engineering Fundamentals
e Software Life Cycles
e Agile philosophy and techniques
e Software Testing
e Behavior and Test Driven Development

e Software Concurrency

e Design and Implementation of Concurrent Software Systems

© Kenneth M. Anderson, 2012



SE Fundamentals (l)

e \What is Software Engineering
e Software engineering is that form of engineering that applies...
¢ a systematic, disciplined, quantifiable approach,

e the principles of computer science, design, engineering, management,
mathematics, psychology, sociology, and other disciplines...

¢ to creating, developing, operating, and maintaining cost-effective, reliably
correct, high-quality solutions to software problems. (Daniel M. Berry)

e Fred Brooks’s No Silver Bullet

® Progress will be made on software engineering in terms of our ability to be
produce high quality software on time and under budget

e But it will be hard work! No one technique is going to “save us”

© Kenneth M. Anderson, 2012



SE Fundamentals (l)

e Overview of Software Life Cycles
e In SE, Process is King!

e Examined transition and differences between traditional waterfall
methods and more recent agile approaches

e Overview of Software Testing
¢ Errors, Faults, and Failures
e Black box, gray box, and white box
e Folding and Sampling

¢ Test Driven Development

© Kenneth M. Anderson, 2012



SE Fundamentals (lll)

e Overview of Concurrency
e \Why the design of concurrent software systems is important
e Chips are getting “wider” not faster
e But concurrency is hard
® race conditions, deadlock, etc.

e |t’s especially hard if you continue to do concurrency the way we’ve
always done it

e Shared mutability, low-level threading primitives, locks

* \We then examined higher-level abstractions that avoid these problems

© Kenneth M. Anderson, 2012



Agile (I

¢ A software development philosophy and a set of practices
¢ that values
e communication over process
e communication over documents
e communication over tools
e <do you notice a pattern?>

e and advocates a set of practices that help developers embrace the fact
that change in software development is inevitable

e Don’t hide from it!

© Kenneth M. Anderson, 2012



Agile (Il

e Specific Techniques
¢ Agile Inception Deck: Make sure the team and the customer are aligned
e User Stories
* [teration Plan
e Burn-Down Charts
¢ Test Driven Development
e Continuous Integration

e Configuration Management

© Kenneth M. Anderson, 2012



Software Testing

¢ Test Automation Frameworks
e Cucumber as the example
e How to get your customer to write tests
e How to maintain separation between
¢ test code and the system under test
e Examined strategies for keeping test code abstract
e while underneath via glue code the system under test could grow

e from simple model code to full fledged system with Uls, web
services, etc.

© Kenneth M. Anderson, 2012



Concurrency

e Fairly broad coverage of concurrency techniques at the individual system
level

e Typical threading primitives and the problems associated with them
e java.util.concurrent
e notion of separation of thread and task
e and the need for a thread allocation strategy
e Styles of Concurrency: shared mutability, isolated mutability, ...
e “New” concurrency models

e Software Transactional Memory, Agent Model, Grand Central Dispatch

© Kenneth M. Anderson, 2012

10



Two Aspects of Concurrency Not Explored

e A Multi-Process Approach to Concurrency
e \With this approach your “system” is a bunch of individual programs where

e cach individual program is single threaded and thus easier for
developers to understand and maintain

e concurrent operation comes from the fact that the operating system will
run these processes at the same time on different cores

e coordination occurs via inter-process communication or via the file
system

e MapReduce

e can be done in individual programs but also enables large scale
distribution of computation across clusters of machines

© Kenneth M. Anderson, 2012 11



Map

Reduce

© Kenneth M. Anderson, 2012

12



MapReduce

e To understand MapReduce, we must first talk about functional programming

¢ \We encountered functional programming when we looked at Clojure in the
context of STM and in our discussions of pure immutability

e Functional programming is an approach to programming language design in
which functions are

e first class values (with the same status as int or string)

® you can pass functions as arguments, return them from functions and
store them in variables (as we saw with blocks in GCD)

¢ and have no side effects
¢ they take input and produce output

e this typically means that they operate on immutable values

13



—xample (l)

¢ |In python, strings are immutable
¢ a = “Ken @@@”
e b = a.replace(“@”, “!1”)
°b
o 'Ken !l
° a
e 'Ken @QQ'

e Replace is a function that takes an immutable value and produces a new
Immutable value with the desired transformation; it has no side effects

14



—xample (I1)

e Functions as values (in python)
e def Foo(x, y):

® return X +y

e add = Foo
e add(2, 2)
L i

e Here, we defined a function, stored it in a variable, and then used the “call
syntax” with that variable to invoke the function that it pointed at

15



—xample (ll)

e continuing from previous example
e def Dolt(fun, X, y): return fun(x,y)
e Dolt(add, 2, 2)
° 4

e Here, we defined a function that accepts three values, some other function
and two arguments

e \\e then invoked that function by passing our add function along with two
arguments ;

e Dolt() is an example of a higher-order function: functions that take
functions as parameters

e Higher-order functions are a common idiom in functional programming

16



Relationship to Concurrency?

e How does this relate to concurrency?
e |t leads naturally to the pure immutability style of concurrent design

e EFach thread operates on immutable data structures using functions
with no side effects

e A thread’s data structures are not shared with other threads
e \Work is performed by passing messages between threads

e |f one thread requires data from another, that data is copied and then
sent

® As we’ve seen, such an approach allows each thread to act like a single-
threaded program; no danger of interference

17



Map, Filter, Reduce

e Three common higher order functions are map, filter, reduce
e map(fun, list) -> list

e Applies fun() to each element of list; returns results in new list
e filter(fun, list) -> list

e Applies boolean fun() to each element of list; returns new list containing
those members of list for which fun() returns True

e reduce(fun, list) -> value

e Returns a value by applying fun() to successive members of list (total =
fun(list[0], list[1]); total = fun(total, list[2]); ...)

18



—Xamples

e list = [10, 20, 30, 40, 50]

e def double(x): return 2 * x
e def limit(x): return x > 30

e def add(x,y): return x +y

e map(double, list) returns [20, 40, 60, 80, 100]
e filter(limit, list) returns [40, 50]

e reduce(add, list) returns 150

19



Implications

e map is very powerful

e especially when you consider that you can pass a list of functions to it and
then pass a higher-order function as the function to be applied

e for example
e def Dolt(x): return x()

e map(Dolt, [t(), (), h(), i0), j0, k0))

e But the real power, with respect to concurrency is that map is simply an
abstraction that can, in turn, be implemented in a number of ways

20



Single Threaded Map

e \We could for instance implement map() like this:
e def map(fun, list):
e results =[]
e for item in list:
e results.append(fun(item))

e This would implement map in a single threaded fashion

21



Multi-threaded Map

e We could also implement map like this (pseudocode):

e def Mapper(Thread):

def __init_ (... fun, list): ... Note: threads can

def run(): complete in any order
since each computation
IS Independent

e self.results = map(fun, list)

e def xmap(fun, list):

split list into N parts where N = number of cores
create N instances of Mapper(fn, list_i)

wait for each thread to end (in order) and grab results
append thread results to xmap results

return xmap results

22



Super Powerful Map

¢ \We could also implement map like this:
e def supermap(fun, list):
e divide list into N parts where N equals # of machines
e send list_i to machine | which then invokes xmap
e wait for results from each machine
e combine into single list and return

e Given this implementation, you can apply a very complicated function to a
very large list and have (potentially) thousands of machines leap into action to
compute the answer

23



Google

¢ Indeed, this is what Google does when you submit a search query:
e def aboveThreshold(x): return x > 0.5 <-- just making this up

e def probabilityDocumentRelatedToSearchTerm(doc): ...

e searchResults =
e filter(aboveThreshold,
e map(probabilityDocumentRelatedToSearchTerm,

¢ [<entire contents of the Internet)))

24



Difference between map and xmap?

* The team behind Erlang published results concerning the difference between
map and xmap

* They make a distinction between
e CPU-bound computations with little message passing vs.
e [ightweight computations with lots of message passing

e With the former, xmap provides linear speed-up (10 CPUs provides a 10x
speed-up, then declining) over map

e the latter less so (10 CPUs provided 4x speed-up)

¢ Indeed, xmap’s performance in the latter case tends to max out at 4x no
matter how many CPUs were added

25



How Projects Really Work

e QOur last lesson for the semester involves insight into how software
development projects REALLY work

e Taken from www.projectcartoon.com

© Kenneth M. Anderson, 2012


http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

P Dol e ClCAM DonLCOm
How the customer
explained it

© Kenneth M. Anderson, 2012

27


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

understood it

© Kenneth M. Anderson, 2012

28


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

" How the analyst
designed it

© Kenneth M. Anderson, 2012

29


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

WY DO BT A DN O
How the programmer
wrote it

© Kenneth M. Anderson, 2012

30


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

P DTOdB CIC At DOML COm:
How the business
consultant described it

© Kenneth M. Anderson, 2012

31


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

W Drodactcaroon com
How the project was
documented

© Kenneth M. Anderson, 2012

32


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

What operations
Installed

© Kenneth M. Anderson, 2012

33


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

WWA_DIOjacicanDon.com
How the customer was
billed

© Kenneth M. Anderson, 2012

34


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

WWa_projecican Donucom
How it was supported

© Kenneth M. Anderson, 2012

35


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

How Projects

Really Work

WWW.Project
cartoon.com

WWR_ DNojecican Don.COm
What the customer really
needed

© Kenneth M. Anderson, 2012

36


http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com
http://www.projectcartoon.com

Coming Up Next

e Summer! Have a good one!

© Kenneth M. Anderson, 2012

37



