
© Kenneth M. Anderson, 2012

Continuous Integration

CSCI 5828: Foundations of Software Engineering
Lecture 27 — 04/24/2012

1



© Kenneth M. Anderson, 2012

Goals

• Review the material in Chapter 15 of the Agile textbook

• Continuous Integration

• Source Control

• Automated Builds

• A culture of incremental changes

• Apply these techniques to a simple example

2



© Kenneth M. Anderson, 2012

Continuous Integration

• Continuous Integration can refer to a number of things

• A practice of always building a working version of your system each day

• A practice of always running your test cases each day

• A practice of committing changes to your version control system each day 

• An automated system that monitors changes to your version control 
system such that when it detects the commit

• it checks out that version of your system

• builds it, runs all tests, and verifies that it passes

• if it does, it creates a new official release

• if it doesn’t, it notifies the appropriate developers

3



© Kenneth M. Anderson, 2012

Why Do You Need It?

• The book starts this chapter with a scenario in which

• your boss calls to say that he’s bringing investors to the office in an hour 
to check out the most recent version of your system

• you have less than 60 minutes to create a stable build, deploy it onto a 
server, and prepare for a demo

• The book offers two ways this scenario plays out

• A big production that ends in failure

• The state of the project is unclear, the merge is ugly, the demo crashes

• A nonevent that ends in success

• The state of the project is known; a deployment is straightforward

4



© Kenneth M. Anderson, 2012

Culture of Production Readiness

• In the beginning stages of development, it is easy to think of deployment as 
an event that will happen in the distant future

• Such thinking can get you into trouble, especially if you do not establish a 
culture of always building a working system

• Continuous Integration fosters a sense of always being production ready

• meaning, you always have a running system

• Now, at first, your system may run but not do anything

• This is better than a system that can’t be compiled or invoked

• With that as a base, you can “grow the system”

• adding features incrementally, always ensuring that the system can be run

5



© Kenneth M. Anderson, 2012

The Practice of Continuous Integration

• As a practice, continuous integration is taking

• all the changes developers make to their software and

• integrating them all together continuously throughout the day

• Building a working system multiple times per day is commonplace and 
expected behavior

• Such practices let you know when you have “broken the build” by “failing 
fast”

• You can then focus on getting things fixed and ensuring that by the end 
of the day, you’re back to having a running system

• If you can achieve this, a demo becomes a non-event. You’re already building 
working systems every day; the demo is just one more build and deploy

6



© Kenneth M. Anderson, 2012

Making It Work

• To make continuous integration possible, you need

• a source code repository

• a check-in process

• an automated build process

• a willingness to work incrementally

• The first two are enabled by version control systems (which have a long 
history in software engineering research)

• The most popular version control systems (git, mercurial) are known as 
distributed version control systems

• this basically means that all developers have a “master copy” of the 
repository; you have everything you need to do development on your 
local machine

7



© Kenneth M. Anderson, 2012

Check-In Process

• By a check-in process, the book means that each of your developers has a 
similar way in which they develop code

• Grab the latest version of the system (however that’s accomplished)

• Write tests and make changes until you’re ready to check in your work

• Run all tests and ensure that all of them pass

• Check for any updates that occurred while you were working

• Run all tests again and ensure that all of them pass

• Check in your changes

• At the end of this process, if the team is using an automated system, it will 
kick in, check out your changes, test them, and then update the official 
release (assuming everything passed)

8



© Kenneth M. Anderson, 2012

Automated Builds

• Most programming languages are associated with automated build 
frameworks

• C and Make

• Java and Ant / Maven

• Ruby on Rails and rake

• All of these depend on a specification of some sort and a command you 
invoke to run the build

• Most integrated development environments have automated builds as one of 
their core capabilities

• You create a project, add/modify files, click “Run”, and the project is built 
for you automatically

9



© Kenneth M. Anderson, 2012

Work Incrementally 

• The key is to integrate new code into the system in small chunks

• You want to be integrating new code or changes into your system and 
building your system several times per day

• This ensures that you are finding incompatible changes quickly

• If you fail to integrate new/changed code multiple times per day, you will set 
yourself up for pain in the near future

• perhaps right at the end of an iteration, where everything is supposed to 
come together, but instead fails, leading to a missed demo

• and extra work trying to integrate large sets of changes all at once

10



© Kenneth M. Anderson, 2012

That’s It!

• Those are the basics

• Now, we’ll spend some time looking at a few of these concepts in more 
detail

• Version control systems: why do we need them?

• Learn a few concepts related to Git

• Automated build system

• Use Ant as an example

• Finally, we’ll finish with an example in which we step through a variant of 
the energy source example from Lecture 12

• Based on Chapter 5 of the Concurrency Textbook

11



Without a Net (I)
Doing software development without configuration 
management is “working without a net”

Configuration management refers to both a process and a 
technology

The process encourages developers to work in such a way that 
changes to code are tracked

changes become “first class objects” that can be named, 
tracked, discussed and manipulated

The technology is any system that provides features to enable 
this process

12



Without a Net (II)
If you don’t use configuration management then

you are not keeping track of changes
you won’t know when features were added
you won’t know when bugs were introduced or fixed
you won’t be able to go back to old versions of your software

You would be “living in the now” with the code
There is only one version of the system: this one

You would have no safety net

13



Developer 1

Developer 2

Demo Machine

AAA

Without a Net (III) 14

Two developers need to 
modify the same file for the 
task they are working on



Developer 1

Developer 2

Demo Machine

A

A

A

Without a Net (IV) 15

They both download the file 
from the demo machine, 
creating two working copies.

working copy



Developer 1

Developer 2

Demo Machine

A

A2

A1

Without a Net (V) 16

They both edit their copies 
and test the new functionality.

A1

A2



Developer 1

Developer 2

Demo Machine

A

A2

A1

Without a Net (VI) 17

Developer 1 finishes first and 
uploads his copy to the demo 
machine.

A1

A2



Developer 1

Developer 2

A2

A1

Without a Net (VII) 18

Developer 2 finishes second 
and uploads his copy to the 
demo machine.

Demo Machine

AA1A2



Without a Net (VIII) 19

This is known as “last check in wins”

At best, developer 1’s work is simply “gone” when the demo 
is run; At worst, developer 1 checked in other changes, that 

cause developer 2’s work to crash when the demo is run.

Demo Machine

AA1A2



Not Acceptable 20

This type of uncertainty and instability is simply not 
acceptable in production software environments

That’s where configuration management comes in
You might sometimes encounter the term “version control”

But in the literature, “version control” is “versioning” applied to 
a single file while “configuration management” is “versioning” 
applied to collections of files



21
1

2

3

4

5

2.1

First draft of code, buggy

Fix some bugs, release v. 1.0

Begin adding spellcheck feature 

spellcheck feature complete,
may have bugs

changes merged, more bugs
fixed, release v. 2.0

Another bug fix,
release v. 1.1

Versioning



22Particular versions of 
files are included in...

... different versions of a 
configuration

File A File B Configuration Z

1

2

3 4

5

1

2

3 4

5

v. 0.1

v. 1.0

v. 1.2

1 1

3 2

5 4

Configuration Management



Developer 1

Developer 2

Repository

AAA

With a Net (I) 23

Two developers need to modify the same file for separate tasks

Demo Machine



Developer 1

Developer 2

Repository

AA

A

With a Net (II) 24

They check the file out into their own working copies

Demo Machine



Developer 1

Developer 2

Repository

A

With a Net (III) 25

They modify their copies.

Demo Machine

A1A1

A2A2



Developer 1

Developer 2

Repository

A

With a Net (IV) 26

Developer 1 finishes first.

Demo Machine

A1 A1

A2A2



Developer 1

Developer 2

Repository

A

With a Net (V) 27

Developer 2 finishes and tries to check in, but...

Demo Machine

A1 A1

A2

A2



Developer 1

Developer 2

Repository

A

With a Net (VI) 28

the change is rejected, because it conflicts with A1

Demo Machine

A1 A1

A2A2



Developer 1

Developer 2

Repository

A

With a Net (VI) 28

the change is rejected, because it conflicts with A1

Demo Machine

A1 A1

A2A2

This is known 
as “first check-

in wins”!



Developer 1

Developer 2

Repository

A

With a Net (VII) 29

What is sent back is an amalgam of A1 and A2’s changes

Demo Machine

A1 A1

A2A1/
A2



Developer 1

Developer 2

Repository

A

With a Net (VII) 29

What is sent back is an amalgam of A1 and A2’s changes

Demo Machine

A1 A1

A2A1/
A2

The file will not 
be syntactically 
correct and will 

not compile!



Developer 1

Developer 2

Repository

A

With a Net (VII) 30

It is up to Developer 2 to merge the changes correctly!

Demo Machine

A1 A1

A3A3



Developer 1

Developer 2

Repository

A

With a Net (VII) 31

He tells the repository the conflict has been resolved and 
checks the file in again

Demo Machine

A1 A1

A3

A3A3A3



Developer 1

Developer 2

Repository

A

With a Net (VII) 32

Developer 1 can now update his local copy and check the 
changes on his machine

Demo Machine

A1 A1

A3

A3A3A3



Developer 1

Developer 2

Repository

A

With a Net (VII) 33

When they are both satisfied, the system can be deployed to 
the demo machine and a successful demo occurs!

Demo Machine

A1 A1

A3

A3

A3

A3



Why Multiple Copies? 34

Old versioning systems 
(RCS) did not allow 
multiple developers to edit 
a single file at a same time

Only one dev. could 
“lock” the file at a time

What changed?
The assumption that 
conflicts occur a lot
data showed they don’t 
happen very often!

When two developers edit 
the same file at the same 
time, they often make 
changes to different parts of 
the file; such changes can 
easily be merged 

A1 A2+ A3=



Tags, Branches, and 
Trunks, Oh My! 35

Configuration management systems can handle the basics 
of checking out the latest version of a system, making 
changes, and checking the changes back in

These changes are committed to what is typically called “the 
trunk” or main line of development

git calls it the “master” branch
But configuration management systems can do much more 
than handle changes to the version of a system that is 
under active development

and that’s where tags and branches come in



Scenario (I)
Imagine that a development team has released version 1.0 
of a system and has moved on to work on version 2.0

they make quite a bit of progress when their customer reports 
a significant bug with version 1.0

None of the developers have version 1.0 available on their 
machines and none of them can remember what version of 
the repository corresponded to “release 1.0”

This highlights the need for good “commit messages”
when you are checking in changes be very explicit about what 
it is you have done; you may need that information later

36



371

2

3

4

5

2.1

First draft of code, buggy

Fix some bugs, release v. 1.0

Begin adding spellcheck feature 

spellcheck feature complete,
may have bugs

changes merged, more bugs
fixed, release v. 2.0

Another bug fix,
release v. 1.1

Remember this diagram? The numbers in boxes are 
repository versions; the text in bold represent tags



38Scenario (II)
To fix the bug found in version 1.0 of their system, the developers

look at the log to locate the version that represented “release 1.0”
associate a symbolic name with that version number to “tag it”

In this case the tag might be “release_1.0”
create a branch that starts at the “release 1.0” tag
and fix the bug and commit the changes to the branch

They don’t commit to the trunk, since the associated files in the 
trunk may have changed so much that the patch doesn’t apply

once the patch is known, a developer can apply it to the trunk 
manually at a later point; or use a “merge/fix conflicts” approach



Branches are Cheap
In any complicated software system, many branches will be 
created to support

bug-fixes
e.g. one branch for each official release

exploration
possibly one branch per developer or one per “risky” feature

e.g. switching to a new persistence framework

Because of this, modern configuration management 
systems make it easy to create branches

39



40

Distributed Configuration 
Management (I)

With subversion and cvs (and many others), configuration 
management depends on an “official” repository

There is a notion that somewhere there is a “master copy” 
and that all working copies are subservient to that copy

This can be a limiting constraint in large projects with lots of 
developers; (single point of failure; off-line work is hard)

so much so that the large project may be tempted to write its 
own configuration management system just to make progress

this is what happened with the Linux project; they produced git 
because no other configuration management system met their 
needs!



Distributed Configuration 
Management (II)

In distributed configuration management systems, like git, 
the notion of a centralized repository goes away

each and every developer has their own “official” repository
with a master branch and any other branches needed by the 
local developer

then other developers can “pull” branches from publicly 
available git repositories and “push” their changes back to 
the original repository

You can learn more about git at the git tutorial
<http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html>

41

http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html


More on Git
There are three main areas of a Git project

The git directory (.git in the root dir of the project)
A working directory and a staging area

Files and dirs in the git directory have been committed (with 
a detailed history maintained of all changes)
Files and dirs in the working directory represents the latest 
version of the project, along with any local modifications
Files and dirs in the staging directory have been modified 
and are scheduled to be included in the next commit

42



© Kenneth M. Anderson, 2012

Automated Build Systems

• Automated build systems are ubiquitous

• Each time you click “Run” in XCode, Visual Studio, Eclipse, etc., an 
automated build system is

• checking to see if any file changed

• if so, it gets compiled

• then any files that depend on it are also recompiled (and so on)

• then the entire system is linked (made ready to run)

• and then launched automatically

43



© Kenneth M. Anderson, 2012

Make

• An early automated build system (still in use today)

• Dependency information between files in a project are placed in a file 
called a Makefile

• Typing “make” at the command, processes those dependencies, and 
causes the files of the project to be compiled in the correct order

• A developer can then make changes to the project files, save them, and 
then, just type “make” to recompile and rebuild the project

• The Makefile is a specification file that can contain many rules; each rule 
specifies how a particular file (or category of files) depends on other files

• Almost all build systems rely on dependency information between files to 
work; in some cases, dependency information is automatically inferred

44



© Kenneth M. Anderson, 2012

Ant

• Ant is a build system used to build large Java programs

• It’s specification is stored in a file called build.xml

• build.xml is (surprise!) an XML file that contains rules to build the system-
under-development

• Instead of typing “make”, developers instead type “ant”

• ant then looks for a build.xml file and uses it to compile (and possibly run) 
a system

• Ant has largely been superseded by Maven

• Maven will automatically download dependencies from remote repositories

• It is much more powerful than Ant

45



© Kenneth M. Anderson, 2012

Example

• Let’s see an example of using some of these tools together

• The example is incomplete as I will not be integrating tests into my 
automated builds

• I will also not be using an automated continuous integration system

• See the software engineering presentations for details on at least 
two of these systems (Bamboo and Jenkins)

• Example taken from Lecture 12

• The energy source example that starts out in a very bad state

• We’ll mimic some of the changes made to this system in Lecture 12 and 
this time check changes into Git and automate the build with Ant 

46



© Kenneth M. Anderson, 2012

Demo

• Step 1: Create directory with initial source files

• Step 2: Create a build.xml file to build and run system

• Step 3: Check initial files into Git

• Step 4: Start to apply changes from Lecture 12

• After each change use Ant to build system and Git to check in changes

47



© Kenneth M. Anderson, 2012

Summary

• Reviewed the material in Chapter 15 of the Agile textbook

• Continuous Integration

• Source Control

• Automated Builds

• A culture of incremental changes

• Apply these techniques to a simple example

• Git and Ant to manage example from Lecture 12

• Based on example from Chapter 5 of the Concurrency textbook

48



© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 28: Software Engineering Presentations

• Lecture 29: Grand Central Dispatch

• Lecture 30: TBD

49


