
© Kenneth M. Anderson, 2012

Creating Agile Software
With Refactoring and Test-Driven Development

CSCI 5828: Foundations of Software Engineering
Lecture 26 — 04/18/2012

1

© Kenneth M. Anderson, 2012

Goals for this lecture

• Our Agile textbook identifies four key concepts that can aid us in creating
agile software

• Unit testing, Refactoring, Test-Driven Development, Continuous Integration

• We’re going to look at refactoring and test-driven development

• Introduce the concept of Refactoring and present examples

• Introduce the concept of Test-Driven Development and present examples

• We’ll look at continuous integration next week

• What about unit tests?

• Take a look at Chapter 12 of the Agile textbook for a brief introduction

2

© Kenneth M. Anderson, 2012

What is Refactoring

• Refactoring is the process of changing a software system such that

• the external behavior of the system does not change

• e.g. functional requirements are maintained

• but the internal structure of the system is improved

• This is sometimes called

• “Improving the design after it has been written”

• It is known in Agile circles as helping to pay down “technical debt”

• Technical debt is defined as the continuous accumulation of shortcuts,
hacks, duplication, and other sins that we regularly commit against our
code base in the name of speed and schedule.

3

© Kenneth M. Anderson, 2012

(Very) Simple Example

• Consolidate Duplicate Conditional Fragments (page 243); This
if (isSpecialDeal()) {

 total = price * 0.95;

 send()

} else {

 total = price * 0.98;

 send()

}

• becomes this
if (isSpecialDeal()) {

 total = price * 0.95;

} else {

 total = price * 0.98;

}

send();

4

© Kenneth M. Anderson, 2012

(Another) Simple Example

• Replace Magic Number with Symbolic Constant

double potentialEnergy(double mass, double height) {
return mass * 9.81 * height;

}

• becomes this

double potentialEnergy(double mass, double height) {
return mass * GRAVITATIONAL_CONSTANT * height;

}
static final double GRAVITATIONAL_CONSTANT = 9.81;

5

In this way, refactoring formalizes good
programming practices

© Kenneth M. Anderson, 2012

Refactoring is thus Dangerous!

• Manager’s point-of-view

• If my programmers spend time “cleaning up the code” then that’s less time
implementing required functionality (and my schedule is slipping as it is!)

• To address this concern

• Refactoring needs to be systematic, incremental, and safe

6

© Kenneth M. Anderson, 2012

Refactoring is Useful Too

• The idea behind refactoring is to acknowledge that it will be difficult to get a
design right the first time and, as a program’s requirements change, the
design may need to change

• refactoring provides techniques for evolving the design in small
incremental steps

• Benefits

• Often code size is reduced after a refactoring

• Confusing structures are transformed into simpler structures

• which are easier to maintain and understand

7

© Kenneth M. Anderson, 2012

A “cookbook” can be useful

• Refactoring: Improving the Design of Existing Code

• by Martin Fowler (and Kent Beck, John Brant, William Opdyke, and Don
Roberts)

• Similar to the Gang of Four’s Design Patterns

• Provides “refactoring patterns”

8

© Kenneth M. Anderson, 2012

Principles in Refactoring

• Fowler’s definition

• Refactoring (noun)

• a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable
behavior

• Refactoring (verb)

• to restructure software by applying a series of refactorings without
changing its observable behavior

9

© Kenneth M. Anderson, 2012

Principles, continued

• The purpose of refactoring is

• to make software easier to understand and modify

• contrast this with performance optimization

• again functionality is not changed, only internal structure;

• however performance optimizations often involve making code harder to
understand (but faster!)

10

© Kenneth M. Anderson, 2012

Principles, continued

• When you systematically apply refactoring, you wear two hats

• adding function

• functionality is added to the system without spending any time
cleaning the code

• refactoring

• no functionality is added, but the code is cleaned up, made easier to
understand and modify, and sometimes is reduced in size

11

© Kenneth M. Anderson, 2012

Principles, continued

• How do you make refactoring safe?

• First, use refactoring “patterns”

• Fowler’s book assigns “names” to refactorings in the same way that the
GoF’s book assigned names to patterns

• Second, test constantly!

• This ties into the agile design paradigm

• you write tests before you write code

• after you refactor, you run the tests and check that they all pass

• if a test fails, the refactoring broke something but you know
about it right away and can fix the problem before you move on

12

© Kenneth M. Anderson, 2012

Why should you refactor?

• Refactoring improves the design of software

• without refactoring, a design will “decay” as people make changes to a
software system

• Refactoring makes software easier to understand

• because structure is improved, duplicated code is eliminated, etc.

• Refactoring helps you find bugs

• Refactoring promotes a deep understanding of the code at hand, and this
understanding aids the programmer in finding bugs and anticipating
potential bugs

• Refactoring helps you program faster

• because a good design enables progress

13

© Kenneth M. Anderson, 2012

When should you refactor?

• The Rule of Three

• Three “strikes” and you refactor

• refers to duplication of code

• Refactor when you add functionality

• do it before you add the new function to make it easier to add the function

• or do it after to clean up the code after the function is added

• Refactor when you need to fix a bug

• Refactor as you do a code review

14

© Kenneth M. Anderson, 2012

Problems with Refactoring

• Databases

• Business applications are often tightly coupled to underlying databases

• code is easy to change; databases are not

• Changing Interfaces (!!)

• Some refactorings require that interfaces be changed

• if you own all the calling code, no problem

• if not, the interface is “published” and can’t change

• Major design changes cannot be accomplished via refactoring

• This is why agile design says that software devs. need courage!

15

© Kenneth M. Anderson, 2012

Refactoring: Where to Start?

• How do you identify code that needs to be refactored?

• Fowler uses an olfactory analogy (attributed to Kent Beck)

• Look for “Bad Smells” in your code

• A very valuable chapter in Fowler’s book

• It presents examples of “bad smells” and then suggests refactoring
techniques to apply

16

© Kenneth M. Anderson, 2012

Bad Smells in Code

• Duplicated Code

• bad because if you modify one instance of duplicated code but not the
others, you (may) have introduced a bug!

• Long Method

• long methods are more difficult to understand

• performance concerns with respect to lots of short methods are largely
obsolete

• Comments (!)

• Comments are sometimes used to hide bad code

• “…comments often are used as a deodorant” (!)

17

© Kenneth M. Anderson, 2012

Bad Smells in Code

• Shotgun Surgery

• a change requires lots of little changes in a lot of different classes

• Feature Envy

• A method requires lots of information from some other class

• move it closer!

• Long Parameter List

• hard to understand, can become inconsistent if the same parameter chain
is being passed from method to method

18

© Kenneth M. Anderson, 2012

Bad Smells in Code

• Primitive Obsession

• characterized by a reluctance to use classes instead of primitive data
types

• Switch Statements

• Switch statements are often duplicated in code; they can typically be
replaced by use of polymorphism (let OO do your selection for you!)

• Speculative Generality

• “Oh I think we need the ability to do this kind of thing someday”

19

© Kenneth M. Anderson, 2012

The Catalog

• The refactoring book has 72 refactoring patterns!

• I’m only going to cover a few of the more common ones, including

• Extract Method

• Replace Temp with Query

• Separate Query from Modifier

• Introduce Parameter Object

• Encapsulate Collection

20

© Kenneth M. Anderson, 2012

Extract Method

• You have a code fragment that can be grouped together

• Turn the fragment into a method whose name explains the purpose of the
fragment

• Example, next slide

21

© Kenneth M. Anderson, 2012

Extract Method, continued

void printOwing(double amount) {
 printBanner()
 //print details
 System.out.println(“name: ” + _name);
 System.out.println(“amount: ” + amount);
}

===

void printOwing(double amount) {
 printBanner()
 printDetails(amount)
}

void printDetails(double amount) {
 System.out.println(“name: ” + _name);
 System.out.println(“amount: ” + amount);
}

22

© Kenneth M. Anderson, 2012

Replace Temp with Query

• You are using a temporary variable to hold the result of an expression

• Extract the expression into a method;

• Replace all references to the temp with the expression.

• The new method can then be used in other methods

• Example, next slide

23

© Kenneth M. Anderson, 2012

Replace Temp with Query, continued

double basePrice = _quantity * _itemPrice;
if (basePrice > 1000)
 return basePrice * 0.95;
else
 return basePrice * 0.98;

==============================

if (basePrice() > 1000)
 return basePrice() * 0.95;
else
 return basePrice() * 0.98;
…
double basePrice() {
 return _quantity * _itemPrice;
}

24

© Kenneth M. Anderson, 2012

Separate Query from Modifier

• Sometimes you will encounter code that does something like this

• getTotalOutstandingAndSetReadyForSummaries()

• It is a query method but it is also changing the state of the object being called

• This change is known as a “side effect” because it’s not the primary
purpose of the method

• It is generally accepted practice that queries should not have side effects so
this refactoring says to split methods like this into:

• getTotalOutstanding()

• setReadyForSummaries()

• Try as best as possible to avoid side effects in query methods

25

© Kenneth M. Anderson, 2012

Introduce Parameter Object

• You have a group of parameters that go naturally together

• Stick them in an object and pass the object

• Imagine methods like

• amountInvoicedIn(start: Date; end: Date);

• amountOverdueIn(start: Date; end: Date);

• This refactoring says replace them with something like

• amountInvoicedIn(dateRange: DateRange)

• The new class starts out as a data holder but will likely attract methods to it

26

© Kenneth M. Anderson, 2012

Encapsulate Collection

• A method returns a collection

• Make it return a read-only version of the collection and provide add/
remove methods

• Student class with

• getCourses(): Map;

• setCourses(courses: Map);

• Change to

• getCourses(): ReadOnlyList

• addCourse(c : Course)

• removeCourse(c : Course)

27

Changing the externally visible
collection, too, is a good idea to
protect clients from depending on the
internals of the Student class

© Kenneth M. Anderson, 2012

Summary for Refactoring

• Refactoring is a useful technique for making non-functional changes to a
software system that result in

• better code structures

• Example: There’s a book out there called “Refactoring to Patterns”

• less code

• Many refactorings are triggered via the discovery of duplicated code

• The refactorings then show you how to eliminate the duplication

• Bad Smells

• Useful analogy for discovering places in a system “ripe” for refactoring

28

29

Test-Driven Development (I)

• The idea is simple

• No production code is written except to make a failing test pass

• Implication

• You have to write test cases before you write code

• Note: use of the word “production”

• which refers to code that is going to be deployed to and used by real users

• It does not say: “No code is written except…”

30

Test-Driven Development (II)

• This means that when you first write a test case, you may be testing code
that does not exist

• And since that means the test case will not compile, obviously the test
case “fails”

• After you write the skeleton code for the objects referenced in the test
case, it will now compile, but also may not pass

• So, then you write the simplest code that will make the test case pass

• Very similar to Behavior-Driven Development but focused at a lower level of
granularity

• BDD focused on creating acceptance tests; TDD is better suited to unit
tests and integration tests

Example (I)

• Consider writing a program to score the game of bowling
• You might start with the following test

public class TestGame extends TestCase {

public void testOneThrow() {

Game g = new Game();

g.addThrow(5);

assertEquals(5, g.getScore());

}
}

• When you compile this program, the test “fails” because the Game class
does not yet exist. But:
• You have defined two methods on the class that you want to use
• You are designing this class from a client’s perspective

31

Example (II)

• You would now write the Game class
public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 0;

}

}

• The code now compiles but the test will still fail: getScore() returns 0 not 5

• In Test-Driven Design, Beck recommends taking small, simple steps

• So, we get the test case to compile before we get it to pass

32

Example (III)

• Once we confirm that the test still fails, we would then write the simplest code
to make the test case pass; that would be

public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 5;

}

}

• The test case now passes!

33

Example (IV)

• But, this code is not very useful!

• Lets add a new test case to enable progress
public class TestGame extends TestCase {

public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals(5, g.getScore());

}
public void testTwoThrows() {

Game g = new Game()
g.addThrow(5)
g.addThrow(4)
assertEquals(9, g.getScore());

}
}

• The first test passes, but the second case fails (since 9 ≠ 5)
• This code is written using JUnit; it uses reflection to invoke tests

automatically

34

Example (V)

• We have duplication of information between the first test and the Game class

• In particular, the number 5 appears in both places

• This duplication occurred because we were writing the simplest code to
make the test pass

• Now, in the presence of the second test case, this duplication does more
harm than good

• So, we must now refactor the code to remove this duplication

35

Example (VI)

public class Game {

private int score = 0;

public void addThrow(int pins) {

score += pins;

}

public int getScore() {

return score;

}

}

36
Both tests now pass. Progress!

Example (VII)

• But now, to make additional progress, we add another test case to the
TestGame class
…

public void testSimpleSpare() {

Game g = new Game()

g.addThrow(3); g.addThrow(7); g.addThrow(3);

assertEquals(13, g.scoreForFrame(1));

assertEquals(16, g.getScore());

}

…

• We’re back to the code not compiling due to scoreForFrame()
• We’ll need to add a method body for this method and give it the simplest

implementation that will make all three of our tests cases pass

37

38

TDD Life Cycle

• The life cycle of test-driven development is

• Quickly add a test

• Run all tests and see the new one fail

• Make a simple change

• Run all tests and see them all pass

• Refactor to remove duplication

• This cycle is followed until you have met your goal;

• note that this cycle simply adds testing to the “add functionality; refactor”
loop covered in the our two lectures on refactoring

39

TDD Life Cycle, continued

• Kent Beck likes to perform TDD using
a testing framework, such as JUnit.

• Within such frameworks

• failing tests are indicated with a
“red bar”

• passing tests are shown with a
“green bar”

• As such, the TDD life cycle is
sometimes described as

• “red bar/green bar/refactor”

JUnit: Red Bar...

• When a test fails:

• You see a red bar

• Failures/Errors are listed

• Clicking on a failure displays more
detailed information about what
went wrong

40

41

Principles of TDD

• Testing List

• keep a record of where you want to go;

• Beck keeps two lists, one for his current coding session and one for
“later”; You won’t necessarily finish everything in one go!

• Test First

• Write tests before code, because you probably won’t do it after

• Writing test cases gets you thinking about the design of your
implementation;

• does this code structure make sense?

• what should the signature of this method be?

42

Principles of TDD, continued

• Assert First

• How do you write a test case?

• By writing its assertions first!

• Suppose you are writing a client/server system and you want to test an
interaction between the server and the client

• Suppose that for each transaction

• some string has to have been read from the server, and

• the socket used to talk to the server should be closed after the
transaction

• Lets write the test case

43

Assert First

public void testCompleteTransaction {

…

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

• Now write the code that will make these asserts possible

44

Assert First, continued

public void testCompleteTransaction {

Server writer = Server(defaultPort(), “abc”)

Socket reader = Socket(“localhost”, defaultPort());

Buffer reply = reader.contents();

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

• Now you have a test case that can drive development
• if you don’t like the interface above for server and socket, then write a

different test case
• or refactor the test case, after you get the above test to pass

45

Principles of TDD, continued

• Evident Data
• How do you represent the intent of your test data
• Even in test cases, we’d like to avoid magic numbers; consider this rewrite

of our second “times” test case
public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(5 * 2, product.amount);

product = five.times(3);

assertEquals(5 * 3, product.amount);

}

• Replace the “magic numbers” with expressions

46

Summary of Test Driven Development

• Test-Driven Development is a “mini” software development life cycle that
helps to organize coding sessions and make them more productive

• Write a failing test case

• Make the simplest change to make it pass

• Refactor to remove duplication

• Repeat!

47

Reflections

• Test-Driven Design builds on the practices of Agile Design Methods

• If you decide to adopt it, not only do you “write code only to make failing
tests pass” but you also get

• an easy way to integrate refactoring into your daily coding practices

• an easy way to introduce “integration testing/building your system
every day” into your work environment

• because you need to run all your tests to make sure that your new
code didn’t break anything; this has the side effect of making
refactoring safe

• courage to try new things, such as unfamiliar design pattern, because
now you have a safety net

But how does it integrate with life cycles?

• With traditional software life cycles, TDD can be “test-driven development”

• You’ll do requirements, use cases, class diagrams, etc. ➟ top down

• Then TDD, coding from scratch to test your design ➟ bottom up

• With agile life cycles, TDD can be “test-driven design”

• You create a new user story and use TDD to “discover” the classes that
will help you implement that feature ➟ bottom up

48

Testing Frameworks

• JUnit Tutorial: <http://clarkware.com/articles/JUnitPrimer.html>

• PyUnit: <http://wiki.python.org/moin/PyUnit>

• Unit testing in Objective-C and Xcode:

• <http://developer.apple.com/mac/articles/tools/
unittestingwithxcode3.html>

• Unit testing with C#: <http://www.csunit.org/tutorials/tutorial7/>

• Unit testing for Ruby:

• <http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/
Unit.html>

49

http://clarkware.com/articles/JUnitPrimer.html
http://clarkware.com/articles/JUnitPrimer.html
http://wiki.python.org/moin/PyUnit
http://wiki.python.org/moin/PyUnit
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://www.csunit.org/tutorials/tutorial7/
http://www.csunit.org/tutorials/tutorial7/
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 27: Continuous Integration

50

