
© Kenneth M. Anderson, 2012

Advanced Actor Model

CSCI 5828: Foundations of Software Engineering
Lecture 25 — 04/17/2012

1

© Kenneth M. Anderson, 2012

Goals

• Review the material in Chapter 8 of the Concurrency textbook

• that deals with the use of TypedActors in Akka

• and mixing

• the Actor model with

• the Software Transactional Memory model

• in the same program, given that Akka implements both!

2

© Kenneth M. Anderson, 2012

Review: The Actor Model (I)

• The Actor Model of Concurrency adopts the approach of

• isolated mutability

• We have individual actors that act independently of one another

• Each one is allowed its own set of mutable variables

• Each actor has access only to its variables

• A can’t access B’s mutable variables

• Akka enforces this by never giving us a direct reference to an actor

• We only ever deal with ActorRefs

3

© Kenneth M. Anderson, 2012

Review: The Actor Model (II)

• Each actor has a queue and sits waiting for messages to arrive

• Work is performed by having actors pass messages to each other

• thus triggering an actor to perform work while processing the message

• Only immutable values get passed from one actor to another

• no chance for race conditions, no chance for visibility problems, etc.

• Actors are independent of threads

• multiple threads can handle the execution of a single actor

• multiple actors might be run by a single thread

• We do not have to worry about assigning actors to threads as well

• As we saw, Akka did a good job of distributing actors across threads (and
cores) for both IO intensive and compute intensive applications!

4

© Kenneth M. Anderson, 2012

Untyped Actors (I)

• In our previous lecture, we looked at the use of “untyped actors”

• In Akka, that means that from an API standpoint

• one actor looks like another

• If I had three different classes (A, B, and C) implement UntypedActor,
they would all have the same interface at run-time

• That is, they would all have a runtime type of ActorRef and they
would all respond (basically) to the ask() and tell() methods

• The difference, of course, is that each would handle different types of
messages

• for instance in the FileSizer example, we had messages types for the
SizeCollector and others for the FileProcessor

5

© Kenneth M. Anderson, 2012

Untyped Actors (II)

• With the need for creating your own message types for UntypedActors

• we saw classes like this in the FileSizer example

• class FileSize {

• public final long size;

• public FileSize(final long fileSize) { size = fileSize; }

• }

• you would then create instances like this

• new FileSize(size)

• and access them like this

• ((FileSize)(message)).size;

6

Hmm. That’s “less than ideal”

© Kenneth M. Anderson, 2012

Untyped Actors (III)

• The problem?

• We’re losing our ability to rely on OO principles in our design

• just to take advantage of a new approach to concurrency

• We’re now surfacing the details of messages

• in a way that is unfamiliar and awkward

• We have to do a bunch of runtime checks on generic instances to handle
all the different message types

• “if (message instanceof FileSize) {” is a “bad smell” in OO programming

7

© Kenneth M. Anderson, 2012

TypedActors

• Akka’s TypedActors attempts to address this situation

• You can design your own class for your actor following good OO principles

• You can get a handle to an instance of your class

• (You still use an Akka factory to create that instance, however)

• You can then call your actor’s methods as you would normally

• behind the scenes, those method calls

• get intercepted and

• converted to asynchronous nonblocking messages passed to the
actor in the same manner that we saw with UntypedActors

8

© Kenneth M. Anderson, 2012

Creating a TypedActor

• To create a typed actor, we need to create two things

• An interface that declares the methods of our TypedActor

• An subclass of TypedActor that implements the above interface

• To instantiate a typed actor, we pass our interface and our subclass to an
Akka factory and get back an instance of our TypedActor subclass

• final Foo f = TypedActor.newInstance(Foo.class, FooImpl.class);

9

© Kenneth M. Anderson, 2012

Using a Typed Actor

• If Foo defined a method: void addBar(Bar b)

• then a call to f.addBar(b) would be converted

• to passing a message containing the immutable value “b”

• to the actor pointed at by f using Akka’s tell() method

• If Foo defined a method: int numberOfBars();

• then a call to “int count = f.numberOfBars” would be converted

• to passing an empty message

• to the actor pointed at by f using Akka’s ask() method

• The use of Future to retrieve the result is handled automatically

10

© Kenneth M. Anderson, 2012

Modifying AKKA_JARS

• To make use of TypedActors, we need to add additional jars to our
AKKA_JARS environment variable

• export AKKA_JARS="$AKKA_JARS:$AKKA_HOME/lib/akka/akka-typed-
actor-1.3.1.jar"

• and

• export AKKA_JARS="$AKKA_JARS:$AKKA_HOME/lib/akka/
aspectwerkz-2.2.3.jar"

• In other words, you need to add akka-typed-actor-1.3.1.jar and
aspectwerkz-2.2.3.jar to your classpath

11

© Kenneth M. Anderson, 2012

Increment Lives Again! (Groan)

• Let’s implement our increment program one more time

• This time using a typed actor

• First, we need an interface

• public interface Counter {

• void increment(final int delta);

• int getCount();

• }

12

© Kenneth M. Anderson, 2012

Increment (II)

• Second, we need an implementation

import akka.actor.TypedActor;
public class CounterImpl extends TypedActor implements Counter {

 public int count = 0;

 public int getCount() {

 return count;

 }

 public void increment(final int delta) {

 count += delta;

 }

}

13

© Kenneth M. Anderson, 2012

Increment (III)

• Third, we need an interface and implementation for Drone
public interface Drone {
 void go();
}
import akka.actor.TypedActor;
public class DroneImpl extends TypedActor implements Drone {
 private final Counter counter;
 public DroneImpl(final Counter counter) {
 this.counter = counter;
 }
 public void go() {
 for (int i = 0; i < 5; i++) {
 counter.increment(1);
 }
 }
}

14

© Kenneth M. Anderson, 2012

Increment (IV)

• Finally, we need a program that creates the counter object and the drones
and invokes them

• Here’s the code to create the Counter object

• final Counter counter =
TypedActor.newInstance(Counter.class, CounterImpl.class);

• We don’t know what the actual type is for the instance passed back from
newInstance().

• Here’s the important thing: We don’t care!

• As long as it responds to the Counter interface, that’s all we need!

• DEMO

15

© Kenneth M. Anderson, 2012

Returning to Energy Source, Step One

• The book’s example for typed actors returns to the Energy Source example
• An interface for the energy source is defined

• public interface EnergySource {

• long getUnitsAvailable();

• long getUsageCount();

• void useEnergy(final long units);

• }

• The energy source is then implemented as a typed actor
• The main program shows that typed actors behave like untyped actors with

respect to threads
• different threads might be used for different messages sent to the same

actor; DEMO

16

© Kenneth M. Anderson, 2012

Energy Source, Step Two: I’ll do it my way

• The second part of the energy source example in the book was very
complicated
• It relies on a language feature of Scala known as traits
• Traits have a weird manifestation inside of Java

• and I decided not to try to teach Scala in this class
• So, I’m going to skip the book’s implementation and

• try to implement it another way
• Basically, we need a replenish() method on the energy source and a way to

invoke the method on the energy source automatically
• We’ll create a service that can handle this for us

• our main program will create the energy source and then pass it to this
service; the service will use a Timer to invoke replenish each second

17

© Kenneth M. Anderson, 2012

Combining the Actor Model with STM

• The Actor Model is designed for problem domains where

• concurrent tasks can run independently from one another

• and communication via asynchronous messages is enough to coordinate
between tasks

• The actor model does not provide a means for managing consensus across
tasks (or actors)

• We may want the actions of two or more actors to all succeed or all fail
collectively (which sounds like a transaction)

• Indeed, such behavior is possible by combining the actor model with STM

18

© Kenneth M. Anderson, 2012

Returning to the Account Transfer Example

• The account transfer example is sufficient to show why you will sometimes
need to combine both of these new concurrency models

• Account objects can be implemented as actors

• withdrawals and deposits needs to occur in a consistent fashion

• single-threaded actors with isolated mutability are perfect for that

• A transfer between accounts, however, requires coordination between the
two actors that manage the two accounts

• if the deposit action succeeds but the withdrawal fails, we need to be
able to roll back the deposit

• both actor actions need to succeed or they both need to fail

19

© Kenneth M. Anderson, 2012

Transactors (I)

• Akka provides several ways to mix actors and STM

• We’ll first look at Akka’s transactional actors, known as transactors

• Transactors act like UntypedActors but

• rather than use the onReceive() message to handle messages

• they use the method atomically()

• and so handling a message occurs inside of a transaction

• which means it can update the value of a Ref without causing an error

• changes to Ref’s will roll back if the transaction fails

• atomically() otherwise acts like onReceive()

• each message is handled one at a time

20

© Kenneth M. Anderson, 2012

Transactors (II)

• To include other actors in on a single transaction

• we implement Transactor’s coordinate() method

• In that method, we identify the other methods and send messages to them

• They will process those messages as part of the transaction created by the
calling Transactor

• if any of the sub-actors fail, it will cause the entire transaction to roll back

• A Transactor that implements coordinate() is still required to implement
atomically(); if so, it may do work in tandem with the sub-actors

• if it’s actions fail, the transaction will roll back negating the actions of the
sub-actors

21

© Kenneth M. Anderson, 2012

Account Transfer Example

• Defines two Transactors

• Account and AccountService

• Defines five messages

• Deposit, Withdraw, FetchBalance, Balance, Transfer

• Account handles the first four messages

• AccountService only handles Transfer

• The main program demonstrates both successful and failed transfers

• DEMO

22

© Kenneth M. Anderson, 2012

Coordinating Typed Actors

• The code becomes much simpler when coordinating typed actors

• All we need to do is to add the java annotation @Coordinated to any
methods in the interface of our typed actor

• The only limitation is that the method have a return type of void

• Then to ensure that method calls on typed actors are coordinated (i.e.,
they run in a transaction and either all succeed or all fail) is to call those
methods inside of a coordinate() method call

• That’s it

• The account service example is much more concise than the previous
version: withdraw and deposit are marked as coordinated; the transfer
service calls those methods inside of a call to coordinate(); simple! DEMO

23

© Kenneth M. Anderson, 2012

Remote Actors

• Akka has functionality to allow for actors to be in separate processes

• It provides a registry for locating remote actors and sending them
messages

• Other than a few changes to indicate that an actor you want to send a
message to is in some other process, the interactions with remote actors are
the same

• See the book for details

• Note: you need to add additional jars to your AKKA_JARS environment
variables to get the remote example to run

24

© Kenneth M. Anderson, 2012

Actor Limitations

• The Actor model has a few limitations

• You need to make sure that messages are immutable

• Otherwise, you can see shared mutable effects (i.e. instability, race
conditions, etc.) creep into actor model programs

• Actors can starve

• if an actor fails, then it will not send out its messages

• if some other actor is waiting for those messages

• it will sit there and do nothing

• Actors can deadlock

• if you design two actors to wait for messages from each other: BOOM!

25

© Kenneth M. Anderson, 2012

Summary

• The actor model is a very powerful model that is scalable and efficient
• We get to write code that makes use of isolated mutability

• allowing us to change the value of a variable in a well understood way
• We handle one message at a time; message passing and the queues are

all handled for us; we just send messages
• Asynchronous, one-way messages can be sent very efficiently

• helping to enable high concurrency between agents
• Agents can share a pool of threads

• the thread used by a thread can change from message to message
• Today, we saw how to use

• typed actors for more concise, understandable actor model code
• how to mix actors (both typed and untyped) with the STM

26

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 26: Creating Agile Software

• Lecture 27: TBD

27

