
© Kenneth M. Anderson, 2012

Favoring Isolated Mutability
The Actor Model of Concurrency

CSCI 5828: Foundations of Software Engineering
Lecture 24 — 04/11/2012

1

© Kenneth M. Anderson, 2012

Goals

• Review the material in Chapter 8 of the Concurrency textbook

• that deals with the fundamentals of the actor approach

• and the use of UntypedActors in Akka

• We’ll review the use of

• TypedActors, and

• Mixing STM with the Actor Model

• in our next lecture

2

© Kenneth M. Anderson, 2012

“If it hurts, stop doing it”

• With concurrency, we have learned

• that the shared mutability approach to concurrency leads to lots of
problems and difficulty

• As a result, we’ve been looking at alternatives

• With the STM model, we looked at managed mutability

• where all values were immutable

• but a “ref” or an “identity” could be associated with different values
over time; with change occurring inside of transactions

• Now, we’ll look at the isolated mutability approach

• as embodied in the Actor Model of Concurrency

3

© Kenneth M. Anderson, 2012

Isolated Mutability and the Actor Model

• Isolated Mutability is a design approach in which
• we can have mutable values
• but we make sure that for each mutable value

• only one thread has access to it
• The Actor Model of concurrency is one in which

• we have multiple lightweight processes, known as actors
• each actor can have mutable state if it wants

• because no other actor has access to that state
• actors instead pass immutable messages to each other if they need to

communicate or coordinate
• these messages are passed asynchronously and are processed in the

order that they arrive

4

© Kenneth M. Anderson, 2012

The Actor Model: Background

• This model has been around for a long time

• It is built into the functional programming language, Erlang

• And was also built into Scala, a hybrid functional/OO language

• Scala is built on top of the JVM

• it can call Java code and Java can call Scala code

• as we saw when working with the STM

• The Akka framework is written in Scala

5

© Kenneth M. Anderson, 2012

Actor Model

• To emphasize

• Programs that use the Actor model are multithreaded

• but each individual actor is single threaded

• they each have access to mutable state

• but an actor cannot access the mutable state of another actor

• all one actor can do to another actor is send an immutable message

• since the messages are immutable, it is safe to share them between
actors

• likewise, all an actor can do is sit and wait for messages to arrive

6

© Kenneth M. Anderson, 2012

Actor Model == OOP++?

• The book asserts that the actor model can be seen as taking OOP to the next
level

• We have objects and they can have mutable state

• but they each run on their own thread

• and all we can do is send messages to them

• we can’t call their methods directly

7

© Kenneth M. Anderson, 2012

Actor Qualities (I)

• Each actor is an independent activity

• it can receive messages

• process them

• and send messages

• Each actor has a built in message queue

• it can receive multiple messages at once

• it can send a message at the same time that other actors are sending them

• As a result, there is plenty of opportunity for concurrency!

8

© Kenneth M. Anderson, 2012

Actor Qualities (II)

• Actor does not equal Thread

• Instead, think of an actor as a task

• Recall how we separated task decomposition from thread allocation?

• Allowing us to create, for instance, a thread pool with 20 threads

• And then allocate 100 tasks to be processed by the thread pool

• The same thing happens with actors

• We will likely have X actors being managed by Y threads where

• X >> Y

• We can get away with this because of the actor lifecycle

9

© Kenneth M. Anderson, 2012

Actor Life Cycle

10

Figure 12—Life cycle of an actor

to Java and Scala. In the next chapter, we’ll take a look at using Akka actors
with other languages.

Akka was written in Scala, so it’s quite simple and more natural to create
and use actors from Scala. Scala conciseness and idioms shine in the Akka
API. At the same time, they’ve done quite a wonderful job of exposing a tra-
ditional Java API so we can easily create and use actors in Java code. We’ll
first take a look at using it in Java and then see how that experience simpli-
fies and changes when we use it in Scala.

Creating Actors in Java
Akka’s abstract class akka.actor.UntypedActor represents an actor. Simply extend
this and implement the required onReceive() method—this method is called
whenever a message arrives for the actor. Let’s give it a shot. We’ll create
an actor...how about a HollywoodActor that’ll respond to requests to play differ-
ent roles?

Download favoringIsolatedMutability/java/create/HollywoodActor.java
public class HollywoodActor extends UntypedActor {

public void onReceive(final Object role) {
System.out.println("Playing " + role +

" from Thread " + Thread.currentThread().getName());
}

}

report erratum • discuss

Creating Actors • 167

Prepared exclusively for Ken Anderson

If an actor is active but has
no messages, then it is
essentially blocked; we can
swap it out and let some
other actor run

© Kenneth M. Anderson, 2012

Creating Actors (I)

11

• Support for the Actor Model is built into Scala

• as a result, Scala’s syntax makes it easy to create actors and send
messages to them

• and to process messages as well

• I’m not going to cover the details of Scala in this class

• so we are going to use the Akka framework to implement actors in Java

• As a result, the information discussed in Lecture 19 on slides 34 and 35 is
relevant here

• you will need to follow those instructions in order to compile our example
programs

© Kenneth M. Anderson, 2012

Creating Actors (II)

12

• The simplest actor in Akka has a class name of UntypedActor

• That class is located in the akka.actor package

• We can think of it as an abstract class that has one method we need to
implement:

• public void onReceive(final Object message)

• We implement this method to indicate how our actor will handle its messages

• Note: the parameter type for message is java.lang.Object

• In practice, only immutable types can be sent to us

• and we do need to perform checks at run-time to figure out what
message was sent to us

© Kenneth M. Anderson, 2012

Creating Actors (III)

13

• Our increment program lives again!

• public class Counter extends UntypedActor {

• private int count = 0;

• public void onReceive(final Object message) {

• if (message instanceof Integer) {

• count += (Integer)message;

• System.out.println("Count: " + count);

• }

• }

• }

© Kenneth M. Anderson, 2012

Creating Actors (IV)

14

• Our increment program lives again!

• public class Drone extends UntypedActor {

• public void onReceive(final Object message) {

• if (message instanceof ActorRef) {

• ActorRef counter = (ActorRef)message;

• for (int i = 0; i < 5; i++) {

• counter.tell(new Integer(1));

• }

• }

• }

• }

© Kenneth M. Anderson, 2012

Creating Actors (V)

15

• To instantiate one of our actors, we make use of the Actors factory in the
package akka.actors.

• We pass the factory the class of the instance, we want created

• We get back an ActorRef that points at our newly created Actor

• So, when we create an instance of our Counter actor

• we do not get back a reference to Counter

• we get back a reference to ActorRef

• We can use that reference to send messages to the Counter

• Why? We are not supposed to have access to instances of Counter
directly; if we did, Counter’s mutable variables might escape!

© Kenneth M. Anderson, 2012

Creating Actors (VI)

16

• Our increment program lives again!

• The full program is in Increment.java

• Creating an ActorRef looks like this

• final ActorRef counter = Actors.actorOf(Counter.class);

• To start an Actor, you call start() on the ActorRef

• counter.start();

• To send an asynchronous message, use the tell() method

• counter.tell(new Integer(100));

• DEMO

© Kenneth M. Anderson, 2012

Creating Actors (VII)

17

• The book had several examples of creating Actors

• DEMO

• One of its examples touches on creating Actors that have constructors

• Since you are not allowed to directly instantiate an Actor class, it is difficult
to pass values to an Actor’s constructor

• To do that, you need to create an anonymous instance of the
UntypedActorFactory class

• that factory has a create() method that returns instances of
UntypedActor and you can pass constructor arguments there

• You then pass the UntypedActorFactory to the actorOf() method

• It uses the factory to create an instance and return an ActorRef

© Kenneth M. Anderson, 2012

Sending Messages

• You can send messages in two ways

• tell(final Object message) -- sends an asynchronous, immutable message

• Future ask(final Object message) -- sends a message, provides future

• Future is NOT java.util.concurrent.Future but it operates in the same way

• Once you get back a future

• you call Future.await() to block until a response is available

• You then call Future.result().get() to acquire the immutable response sent to
you by the other actor

• The call to result().get() can fail; you need to call
Future.result().isDefined() and only call get() when isDefined() returns true

18

DEMO

© Kenneth M. Anderson, 2012

Replying

• If you receive a message from another actor, how do you reply?

• If you are within the onReceive() method of an actor, you can simply call

• getContext().channel() to get access to an ActorRef

• Once you have the ActorRef, you can call tell() and ask() as normal

• So, replying is really the same thing as just sending!

19

© Kenneth M. Anderson, 2012

Handling Multiple Actors

• We already saw multiple actors in action with our simple Increment program

• The book returns to the PrimeFinder example

• It has a simple design

• We are provided the upper bound of our search and the number of partitions

• Our main program create one Actor per partition and sends it a range
using ask(), which returns a Future

• Each actor calculates the number of primes in that range and sends it
back

• Our main program loops through Future objects and calculates the total
number of primes

• As you will see, the program maxes out the cores of my machine when I run the
program

20

© Kenneth M. Anderson, 2012

Coordinating Actors (I)

• To show how Actors can coordinate with each other, the book returns to the
FileSize program

• Our previous versions of this program made use of coordination
mechanisms (locks) and executors

• With the isolated mutability approach of the Actor model

• we can get a simpler solution and avoid some of the problems we
encountered earlier

• such as when we locked up the thread pool with a poor design related
to spawning tasks while traversing the file hierarchy

21

© Kenneth M. Anderson, 2012

Coordinating Actors (II)

• The design of this system depends on two types of actors

• FileProcessors

• actors which process the size of a single directory

• we will create 100 of these to simulate the 100 threads we used earlier

• SizeCollector

• an actor who coordinates the FileProcessors and maintains a counter
to keep track of the total size of the directory

22

© Kenneth M. Anderson, 2012

Coordinating Actors (III)

• The design of this system also depends on three messages

• RequestAFile:

• sent by a FileProcessor to the SizeCollector

• The effect is to tell the SizeCollector, “I’m ready!”

• FileToProcess:

• sent by SizeCollector to FileProcessor or vice versa

• provides a pointer to a file or directory that needs to be processed

• FileSize

• sent by FileProcessor to SizeCollector

• returns the size of a file/directory that was processed

23

© Kenneth M. Anderson, 2012

Coordinating Actors (IV)

• Two key design points

• When a FileProcessor starts up, it needs to tell the SizeCollector that it is
available

• It overrides a lifecycle method preStart() to do that

• That method ensures that we send a RequestAFile message to the
SizeCollector

• A reference to the SizeCollector is passed in via FileProcessor’s
constructor

• When a FileProcessor is given a directory, it does not recursively work its
way through all subdirectories. Instead, as it finds subdirectories, it sends
FileToProcess messages to SizeCollector

24

DEMO

© Kenneth M. Anderson, 2012

Results

• In both cases (PrimeFinder and FileSizer), with the Actor Model, we get

• comparable performance to the previous solutions

• much simpler code

• no locks

• all code written from single threaded standpoint

• allows for use of mutable variables with predictable behavior

25

© Kenneth M. Anderson, 2012

Summary

• Reviewed the basics of the Actor model

• Independent actors (which can be assigned to threads like tasks)

• with mutable state that is NOT shared

• with predictable semantics since the actor is single threaded

• communicating with other actors by passing immutable messages

• These constructs enable the isolated mutability approach to concurrency

• You get great performance with a very simple and straightforward model

• no thread allocation, no task decomposition, no locks

26

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 25: Advanced Actor Model

• Lecture 26: Creating Agile Software

27

