
© Kenneth M. Anderson, 2012

Cucumber: Finishing the Example

CSCI 5828: Foundations of Software Engineering
Lecture 23 — 04/09/2012

1

© Kenneth M. Anderson, 2012

Goals

• Review the contents of Chapters 9 and 10 of the Cucumber textbook

• Testing Asynchronous Systems

• Testing Databases

2

© Kenneth M. Anderson, 2012

Before We Get Started: Update Gems

• Our example will make use of a new gem called “service_manager”

• To make sure we can use it, we add

• gem 'service_manager', '0.6.2'

• to our Gemfile and then run “bundle install” to make sure our environment
is ready

3

© Kenneth M. Anderson, 2012

ATM: Continuing the Example (I)

• At the end of our last lecture, our ATM system was implemented to handle

• a single scenario, where $20 is withdrawn from a $100 account

• The system itself was implemented as a web app

• using the Sinatra web service framework

• instances of the domain model are shared between the test code and the
web app

• Capybara was used to test the web app

• All of this occurred behind the abstraction of step definitions that

• only refer to the problem domain

• not a particular implementation or UI of a system

4

© Kenneth M. Anderson, 2012

ATM: Continuing the Example (II)

• We will now increase the complexity of our implementation

• to demonstrate how to use Cucumber

• to test systems that have

• asynchronous components and

• databases

• With respect to the former, when the system-under-test is asynchronous

• we have to deal with the fact that our test code will

• ask for an operation to be performed

• and then somehow detect when this has happened

5

© Kenneth M. Anderson, 2012

An Asynchronous ATM

• To make our ATM example asynchronous, we will

• create a “repository” class that holds the current balance of the account

• create a transaction queue class to hold credit/debit transactions for the
account

• create a transaction processor that pulls transactions off the queue and
updates the balance

• This means when a debit or credit is performed,

• the balance is NOT updated immediately

• instead, a new transaction is put on the queue

• where it will be handled at some point in the future by the processor

6

© Kenneth M. Anderson, 2012

Implications

• The primary concern with testing this new system is

• synchronizing test code with the actions of the system

• I can no longer perform a debit and then immediately check the balance

• it is likely that our debit transaction is still on the queue

• as a result, the balance will not match our expectations

• This type of asynchronous interaction can lead to flickering scenarios

• sometimes they pass and sometimes they fail depending on the timing

• As a result, we must provide a way for the test code

• to synchronize with the ATM

7

© Kenneth M. Anderson, 2012

Two Approaches

• There are two options for adding this sort of synchronization
• We can listen

• With this technique, the system is engineered to generate events
• The test code registers for the appropriate events and performs an

operation
• it then blocks until the appropriate event has been generated
• or fails with a timeout if a problem causes the system to crash

• We can sample
• With this technique, we loop, polling the system until we detect that the

change we were waiting for has occurred
• This is known as a “busy wait” and is not as efficient as the former

technique, but it is easier to implement

8

© Kenneth M. Anderson, 2012

Updates: Account

• The first change to our existing system is to change our Account class to
make use of two new objects

• the repository (the balance store) and the transaction processor

• The balance method will simply query the repository for the latest value

• The credit and debit methods will add a new transaction to the queue

• Transactions are strings that look like this

• “+20”, “-45”, “+100”, “-60”, etc.

• DEMO

9

© Kenneth M. Anderson, 2012

Updates: Transaction Queue

• The Transaction Queue is implemented simply
• It creates a directory called messages

• and stores each transaction as a file in that directory
• the name of each file is the transaction id
• ids start at 1 and increase indefinitely
• when a transaction is read, its corresponding file is deleted

• DEMO; NOTE:
• self.clear is a static method
• File.open takes a block and passes the newly opened file to that block
• read is meant to be invoked by an iterator

• each time through it “yields” a string
• which invokes a block passed in by the caller to process the string

10

© Kenneth M. Anderson, 2012

Updates: BalanceStore

• BalanceStore is a simple class that stores the current value of the account in
a text file
• A request for the current balance

• results in reading the file, converting its contents to an integer, and
returning that value

• A request to update the balance
• Invokes File.open (deleting the existing file) and writing the new value as

a string
• DEMO; NOTE:

• The method balance=() takes advantage of ruby’s ability to convert
• a.balance = 20

• to
• a.balance=(20)

11

© Kenneth M. Anderson, 2012

Updates: Transaction Processor

• The transaction processor can now be written

• It makes use of both the BalanceStore and the TransactionQueue

• It has a simple design

• It loops forever

• calling read() on the TransactionQueue

• It sleeps for 1 second # to ensure our test fails

• It converts the transaction to an integer

• Calculates the new balance

• Writes the new balance to the balance store; DEMO

12

© Kenneth M. Anderson, 2012

Making Sure Our Scenario Doesn’t Leak

• Since our classes now create files in the file system

• it is possible for our scenario to “leak” data

• In this context, that would mean, for instance,

• running scenario A which leaves the account with a $500 balance

• running scenario B which assumes the account starts with a balance of
$100 but instead starts with a balance of $500

• because scenario A forgot to clean up after itself

• We will use a hook to make sure that both classes delete any files that might
have been created by previous scenarios (we’ll also remove our previous hook)

• The hook will set the balance to zero and clear the queue; DEMO

13

© Kenneth M. Anderson, 2012

Configuring Service Manager (I)

• To make our transaction service asynchronous

• we will run it in a separate process

• That’s where Service Manager comes in (the gem we installed on slide 3)

• We provide it with a config directory that tells it

• what program to invoke

• how to tell if that program was successfully invoked

• and a few other details

• We then make sure we start up the service manager when our tests are
being run

14

© Kenneth M. Anderson, 2012

Configuring Service Manager (II)

• First, we create the config directory in the top level of our ATM project
directory

• DEMO

• Then, we create a file called services.rb in our features/support directory

• and have it start-up the ServiceManager; DEMO

• This will, in turn, cause it to read its config information and launch our
transaction processor

• The transaction process will loop waiting for files to appear in the
transaction queue’s messages directory

• When we are shutting down, the ServiceManager will also shutdown the
process that’s running the transaction processor automatically

15

© Kenneth M. Anderson, 2012

You Know the Drill

• It’s finally time to run cucumber again

• and ...

• WATCH IT FAIL!

• Our system flies through

• creating the account with $100

• and withdrawing $20

• But then fails when it tries to read the balance

• It expected $80 but the balance is $0

• Looking in the messages directory after the test shows two unprocessed
transactions: 1 with value “+100” and 2 with value “-20”

16

© Kenneth M. Anderson, 2012

Why Did It Fail? (I)

• The lack of synchronization (really the “sleep 1” statement)

• Here, the transaction processor is sleeping for one second

• while cucumber runs its test

• the scenario will ALWAYS fail

• We can flip where the sleep statement is

• If we take it out of the transaction processor

• and add it to the step definition, the scenario will ALWAYS pass

• that’s because the processor has more than enough time to process
the transactions while the step definition sleeps

17

© Kenneth M. Anderson, 2012

Why Did It Fail? (II)

• To truly see the race condition, we can do the following

• take out the sleep statement altogether

• run the following command

• ruby -e “30.times { system ‘cucumber -f progress’ }”

• This runs the test 30 times in a row and

• sometimes the scenario fails

• and sometimes the scenario passes

• It flickers!

18

© Kenneth M. Anderson, 2012

How to Fix?

• We are going to use the sampling method to synchronize with the transaction
processor

• We’re going to add a new method to the world object called “eventually”

• eventually will run a block over and over until

• it returns true, meaning the condition we were looking for occurred

• or a time limit is exceeded, we then throw an exception causing the
scenario to fail

• We then change our final step definition, to pass its check that the balance
is equal to $80 to the new eventually method; DEMO

• Now, if we run the test 30 times in a row, all tests pass!

19

© Kenneth M. Anderson, 2012

Next Up: Databases

• Now, we are going to update our ATM to use a database to keep track of the
balances of multiple accounts
• We’re going to use a framework called ActiveRecord—developed as part

of Ruby on Rails—to create an sqlite3 database
• ActiveRecord makes accessing a database really easy

• as long as you follow its conventions
• A class called Account is stored in the accounts table

• The class looks like this
• class Account < ActiveRecord::Base
• end

• At run time, the class is dynamically modified to contain methods that
allow access to the associated database table

20

© Kenneth M. Anderson, 2012

Update Gems

• Once more, we need to update our Gemfile

• This time we add the gems for ActiveRecord and sqlite3

• gem 'activerecord', '3.1.3'

• gem 'sqlite3', '1.3.5'

• Run “bundle install” to download these packages and their dependencies

21

© Kenneth M. Anderson, 2012

Updates: New Account Class

• We move the Account class out of nicebank.rb and make it an ActiveRecord
subclass

• It will associate with a database that has three columns:

• id: unique id for each record, autogenerated by ActiveRecord

• number: a unique account number

• balance: the current balance for that account

• We get rid of our file-based BalanceStore class

• but still use the transaction processor to update the balance of an
account

• DEMO

22

© Kenneth M. Anderson, 2012

Creating the Database

• ActiveRecord makes use of a concept called migrations

• to make sure a program is using the correct version of a database

• One possible migration is to indicate how to create the database

• if a database file doesn’t exist when we start our program

• We place this migration in db/migrate

• the migration itself contains code that describes the database and how to
create the accounts table

• DEMO

23

© Kenneth M. Anderson, 2012

Updates: Get Rid of BalanceStore

• We will be using a database now

• so we don’t need our BalanceStore class

• We delete it

• and update hooks.rb to no longer use it to initialize the balance of our
account to zero

• Other clean up

• We now need to tell the code in nicebank.rb and transaction_processor
where the account class is located

• We use a require_relative statement to handle that

• And remove any remaining references to the BalanceStore class

24

© Kenneth M. Anderson, 2012

Run It To See It Fail

• We now have enough code in place to try running cucumber

• We will see ActiveRecord notice that the database doesn’t exist

• It will kick in and create it using the migration we defined

• (All of this done automatically, via convention)

• The scenario will then fail because

• we haven’t updated the transaction processor to make use of the
database

• and there are still references to balance_store in our code, even though
we got rid of the BalanceStore class

• If you run “strings db/bank.db”, you’ll see it indeed has an accounts table

25

© Kenneth M. Anderson, 2012

Updates: Transaction Processor

• We need to update the transaction processor

• It now receives messages of the form

• <amount>,<account number>

• We have to parse out the amount and account number

• Retrieve the account from the database

• Update its balance

• Save the change back to the database

• DEMO

26

© Kenneth M. Anderson, 2012

Updates: World Object

• Our account has a field called “number”

• confusingly, its type has been set to string

• Currently, when we create an account, we are not assigning a value to this
field, and so are transactions look like this:

• “+100,” and “-20,”

• We will now change our world object to create an account whose “number” is
set to “test”

• DEMO

• We are doing this to demonstrate a few features about ActiveRecord and a
difficultly about testing databases

27

© Kenneth M. Anderson, 2012

Failures (I)

• First, our validation step fails because

• we create an account with a zero balance in our web app

• we perform two transactions on it (add 100; subtract 20)

• those get performed in a separate process by the transaction processor

• we then check to see if the balance is $80 but our account object’s
balance stays at $0

• it doesn’t know the balance was changed by a different process

• To fix: we add a statement to reload the account’s values from the database

• We run cucumber again and...

28

© Kenneth M. Anderson, 2012

Failures (II)

• We fail again

• This time our database validation code complains when we try to create
another Account object whose “number” equals “test”

• The reason

• we told ActiveRecord that field must be unique

• and we already have an account with that number

• which was created on the PREVIOUS test

• We’re dealing with a leaky scenario

• where results from a previous run of the scenario have leaked through to
this run, causing it to fail!

29

© Kenneth M. Anderson, 2012

How to Fix? (I)

• We need to make sure we start each scenario with a clean database
• We can do this one of two ways

• transactions or truncation
• With the transaction approach

• you create a transaction at the start of your scenario
• you perform a bunch of changes
• test the result
• and then roll the transaction back
• all changes then “go away” because they don’t get committed

• The problem?
• Our system has two separate processes and two separate connections

to the database; with transactions, they can’t see each other’s changes

30

© Kenneth M. Anderson, 2012

How to Fix? (II)

• With truncation, you simply make sure that your database is set back to its
initial state (truncated)
• You do this by ensuring that all tables have all of their data deleted

• The book uses a gem called Database Cleaner to take care of this
• We’ll just use ActiveRecord directly

• in a hook
• to execute a “truncate table” command directly on the accounts

table
• In our hook, we need to say:

• ActiveRecord::Base.connection.execute("DELETE FROM accounts")
• We’ll put our hook in features/support/database.rb

• DEMO

31

© Kenneth M. Anderson, 2012

Summary

• With this lecture, we reach the end of a detailed example for Cucumber

• Remember, throughout this entire lecture, everything we did last time

• launch a web service

• load “/” to get a form, interpret the form, and submit a withdrawal

• share domain objects between test code and web app

• still occurred every time we launched the test

• we then added an asynchronous transaction processor

• and a database

• and via the abstraction provided by the world object, the text of the scenario
never changed and never directly references any of the implementation

32

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 24: The Agent (or Actor) Model of Concurrency

• Lecture 25: Creating Agile Software

33

