
© Kenneth M. Anderson, 2012

More Software Transactional Memory

CSCI 5828: Foundations of Software Engineering
Lecture 19 — 03/20/2012

1

© Kenneth M. Anderson, 2012

Goals

• Complete our review of the material in Chapter 6 of our concurrency textbook

• Examine more in depth examples

• using STM

• in Java

• via the Akka framework

2

© Kenneth M. Anderson, 2012

Last Time

• Introduced notion of software transactional memory

• Approach to concurrency based on the use of transactions

• to update identities (or refs) that have a mutable association with an
immutable value

• at any one point in time, the ref has one and only one value

• in a transaction, we can change the ref’s association to a different
immutable value

• This approach can achieve better utilization of cores than traditional lock-
based/synchronization-based approaches to concurrency because it
employs an optimistic locking approach in which a thread encounters
overhead (unnecessary work) when a write contention occurs

3

© Kenneth M. Anderson, 2012

Picking Up Where We Left Off: Nested Transactions

• Nested transactions occur

• when a method executing inside of a transaction

• calls another method that starts a new transaction

• Akka can be configured to handle nested transactions in various ways

• the default is that changes made by inner transactions are not committed

• until the outer transaction is committed

• thus the changes made by the inner transactions are local to the outer
transaction

• all such changes will be rolled back as a group if the outer transaction
has to be retried

4

© Kenneth M. Anderson, 2012

Example: Transferring Money Between Accounts

• We return to an example we saw back in Chapter 4

• transferring money back between bank accounts

• This situation is ideal for nested transactions

• the outer transaction is the transfer in total

• the inner transactions are

• the withdrawal from one account

• the deposit into a second account

• The Chapter 4 version that used a Lock to implement the transfer

• the STM version is more concise and has no locks; DEMO

5

© Kenneth M. Anderson, 2012

Configuring Transactions

• Akka provides a way to configure transactions programmatically

• by use of a TransactionFactory class

• An instance of this class can be passed to an instance of the Atomic<T>
class to configure properties of the transaction that it creates

• A TransactionFactoryBuilder is used to create an instance of
TransactionFactory

• the book shows how to make a transaction “read only” but the
documentation to TransactionFactoryBuilder reveals methods for
setting whether a transaction is interruptible, how many times it can be
retried, what its timeout is if blocked, whether it CAN be blocked, etc.

• The example creates a read only transaction and then tries to change a ref;
DEMO

6

© Kenneth M. Anderson, 2012

Blocking Transactions

• If we have a transaction that fails because the value of one of its refs is in a
state that prevents the transaction’s logic from doing its job

• For instance, withdrawing $500 from an account that has only $200

• Akka will allow a transaction to enter a queue to be retried but to wait (block)
until the ref it depends on has been changed

• You need to configure the transaction to enable blocking and you need to
specify how long you are willing to wait

• Then, within the transaction, you check the value of the ref that you depend
on and if you can’t do your job, you call retry()

• Your transaction will then be blocked until it can make progress

• The example involves getting cups of coffee from a coffee pot that will be
refilled on a periodic basis; some transactions will block between refills; DEMO

7

© Kenneth M. Anderson, 2012

Transaction Event Handlers

• Akka provides a means for executing code when

• a transaction succeeds (i.e. commits successfully)

• or when a transaction fails (i.e. is rolled back)

• Within our atomically() method, we first configure our event handlers by

• calling deferred() and passing in an instance of Runnable containing the
code that should execute when our transaction succeeds

• calling compensating() and passing in an instance of Runnable containing
the code that should execute when our transaction fails

• Note: this code will run in a separate thread and the code in compensating()
may run multiple times once for each time its associated transaction fails

• Design Accordingly! DEMO

8

© Kenneth M. Anderson, 2012

Dealing with Non-Primitive Values (I)

• The examples so far have all associated primitive values with our refs

• But applications are much more complex and application-specific classes
and their instances will be needed as well

• If so, these classes need to be made immutable

• The class needs to be declared final

• All instance variables need to be marked as final

• And, all of their values need to be immutable

• When a change is made, we make a copy; no mutable state!

• The problem of course is we need to be smart about how we do this;
inefficient copying can lead to too much memory being used

9

© Kenneth M. Anderson, 2012

Dealing with Non-Primitive Values (II)

• In addition to using immutable application-specific classes

• we must also make sure that when we need to use a collection class

• that it is implemented to support immutability via persistent data
structures

• Akka provides access to two persistent collection classes in Java

• TransactionalVector and TransactionalMap

• These classes behave like arrays and hash tables but honor Akka’s
transaction semantics

• You can make as many changes as you need to them in a transaction

• if the transaction fails, all of the changes are discarded; DEMO

10

© Kenneth M. Anderson, 2012

Dealing with Write Skew

• As we saw in lecture 19, STM can fall prey to write skew

• The situation where two transactions can meet application properties in
isolation but violate an application property globally after both of their
effects are applied

• The example we looked at concerned withdrawals on checking and
savings accounts in which the sum of their balances must always be
greater than or equal to $1000

• Akka supports the ability to avoid write skew by triggering transaction
rollback when any ref accessed by a transaction is updated by some other
transaction (regardless of whether we update the ref or not)

• You just need to configure it via the TransactionFactory; DEMO

11

© Kenneth M. Anderson, 2012

Limitations (I)

• STM has a number of properties to make it attractive as an alternative means
of designing concurrent software systems with shared mutability

• But, it does have some limitations

• In particular

• STM is ideal for those applications where write contention happens rarely

• If your application will have lots of threads changing the same identity,
then STM is not the best fit

• The book demonstrates this by revisiting the FileSize application again

• It spawns too many threads all updating the same refs

• any significant directory hierarchy causes the program to fail

12

© Kenneth M. Anderson, 2012

Limitations (II)

• The book, The Joy of Clojure, identifies two additional limitations

• IO cannot be performed during a transaction

• Transactions need to be short

• The reason?

• IO operations are not idempotent

• Each time you perform an IO operation, you can get a different result

• Thus, if you have an IO operation in your transaction and the
transaction fails then the transaction is going to be retried and the IO
operation will be invoked again

• Long transactions have a high risk of failure; will get stuck in retry loop

13

© Kenneth M. Anderson, 2012

Summary

• STM is an alternative approach to concurrency with major benefits

• Provides maximum concurrency via lock-free concurrent programming
model organized around transactions

• Changes to shared mutable state only happen in transactions

• No race conditions due to transaction semantics; no visibility problems

• With no locks, deadlock and livelock are eliminated

• It does have limitations

• Application must have minimal write contention

• No IO during transactions

• No long transactions

14

© Kenneth M. Anderson, 2012

Coming Up Next

• SPRING BREAK!!!

• Lecture 21: Agile Project Execution

15

