
© Kenneth M. Anderson, 2012

Software Transactional Memory

CSCI 5828: Foundations of Software Engineering
Lecture 19 — 03/20/2012

1

© Kenneth M. Anderson, 2012

Goals

• Review material in Chapter 6 of our concurrency textbook

• Introduce Software Transaction Memory

• Separation of Identity and State to enable this approach

• Discuss the lock free programming of concurrent systems it enables

• Review several examples both in Clojure and Java

2

© Kenneth M. Anderson, 2012

Software Transactional Memory

• The problems associated with shared mutability in concurrent software
systems have led computer scientists to invent alternatives

• One such approach is known as the software transactional memory

• this approach to concurrency was popularized by its inclusion into the
runtime of the Clojure programming language

• frameworks which implement STM are available for other programming
languages, including Java and Scala

• STM provides a means for explicitly keeping track of mutable state and
ensuring that changes to that state are protected and visible to all threads

3

© Kenneth M. Anderson, 2012

When is STM useful?

• STM is best used in those applications in which the access patterns to
shared mutable state follow this pattern

• frequent reads (by multiple threads)

• very infrequent write collisions

• i.e. two threads trying to change the same variable happens only rarely

• The reason for this is hinted at by the word “transactional” in STM

• Changes to shared mutable state occur during transactions

• If a transaction fails, updates need to be rolled back

• You want to avoid the performance hit of rollbacks to maximize
concurrency

4

© Kenneth M. Anderson, 2012

The Problems

• The concurrency problems being addressed by the STM include

• synchronization

• and

• the conflation of identity and state by imperative OO programming
languages

5

© Kenneth M. Anderson, 2012

Brief Review: Problems with Synchronization (I)

• With shared mutability, there exists the potential for

• race conditions

• thread A changes the value of X at the same time as thread B

• visibility problems

• thread A changes the value of X but thread B does not see the change

• To avoid these problems, we must add synchronization

• synchronized keyword, synchronized blocks, locks

6

© Kenneth M. Anderson, 2012

Brief Review: Problems with Synchronization (II)

• Adding synchronization leads to OTHER problems

• programmers can get synchronization wrong

• they can be too conservative and force performance back to single-
threaded levels

• race conditions can lurk

• once synchronization has been put in place

• threads slow down as contention occur

• i.e. threads that want to access the same lock at the same time

• deadlock can occur, as well as live lock and starvation

7

© Kenneth M. Anderson, 2012

Conflating Identity with State (I)

• In OOP, when we create a new instance of a class

• we receive a pointer to the instance that serves as both

• its identity (this instance represents Ken the Employee)

• its state (this instance shows that Ken started work in July 1998)

• This merging of identity and state is a natural consequence of

• using classes to combine state and behavior

• having classes encapsulate (or hide) state behind a set of methods

8

© Kenneth M. Anderson, 2012

Conflating Identity with State (II)

• This merging of state and identity leads to problems

• anyone with access to Ken the Employee can change his start date

• the previous start date is lost forever

• indeed, there is no indication that Ken’s start date was ever anything else

• and since Ken actually started in July 1998, the new start date is wrong

• In concurrent situations, a thread with a pointer to Ken the Employee has to
assume that Ken’s state can change at any moment

• and thus the thread is forced to use synchronization to block access to
Ken the Employee by other threads while we work with Ken the Employee

9

© Kenneth M. Anderson, 2012

The (old) model is wrong

• Rather than having identity and state merged, the two must be separated

• In this new model, identity is defined as

• a stable logical entity associated with a series of different values over time

• A value is defined as

• something that doesn’t change. All values are immutable

• Identity ≠ Name

• Thread A can point to “Ken the Employee” with a variable called “ken”;
Thread B can point to “Ken the Employee” with a variable called “father”

• Ken and Father are names for the same identity

10

© Kenneth M. Anderson, 2012

Values Do Not Change

• The Date “August 25, 1968” never changes

• You might have an identity called “today”

• At one point, “today” was associated with “August 25, 1968”

• The next day, it was associated with “August 26, 1968” and now that
identity is associated with “March 20, 2012”

• The identity is ALWAYS associated with a single immutable value at a given
time; someone (a thread) can request that it be associated with a different
immutable value (perhaps creating the new value based on the old value)

• the association is then changed, not the values

• This immutability is good in concurrent situations, since there is never any
danger of a value changing out from under you

11

© Kenneth M. Anderson, 2012 12

today

identity

Thread
A

Thread
B

Thread
C

03/19/2012 03/20/2012 03/21/2012

atomic
change

In STM, threads access
identities which are
associated with
immutable values

Changes to an identity’s
association occur within
a transaction ensuring
that the change is
atomic and visible to all
threads

© Kenneth M. Anderson, 2012

Benefits

• Separating identity from state in concurrent systems enables

• lock-free programming, and

• improved concurrency

• because contention is reduced to the bare minimum

• How? Via transactions

• All updates occur via a transaction

• if only transaction A is updating identity B, no locks are encountered

• if transactions A and B are updating identity C at the same time

• then the fastest one “wins” and the other is rolled back and retried

13

© Kenneth M. Anderson, 2012

STM = This New Model

• Software transactional memory enables this new model of

• separating identity from state

• We tell the STM when we have a new identity to track

• providing the identity with an initial immutable value

• Multiple threads can read this value with no contention

• Any request to read the value of an identity simply returns the current value

• Non-blocking reads help to improve overall concurrency

• When an identity switches to a new value, which happens atomically, all
subsequent reads get the new value

14

© Kenneth M. Anderson, 2012

STM Basics (I)

• STM solves two major problems in the design of concurrent software systems

• crossing the memory barrier (visibility)

• preventing race conditions (consistent state between threads)

• Transactions ensure that changes to identities cross the memory barrier

• when those changes are committed at the end of a transaction

• Within transaction A, the values of all identities referenced by transaction A

• are guaranteed to reflect all changes

• of all transactions that completed before transaction A begins

15

© Kenneth M. Anderson, 2012

STM Basics (II)

• Changes within a transaction are local to the transaction

• that is, visible only within the transaction

• until they are committed

• If the STM discovers that transaction B has committed a change to identity C
while transaction A is also changing C

• then A is rolled back, it receives the latest value of C, and tries again

• The STM can also rollback transaction A if A reads from identity D and D is
changed by another transaction before A is finished

• This prevents A from taking actions based on a stale view of the world

16

© Kenneth M. Anderson, 2012 17

Transaction A Transaction B Transaction C

Reads identity D

Updates identity E

Updates identity E

Ends
A is rolled back, tries again

Reads identity D

Updates identity E Updates identity D

Ends

Begins

A is rolled back, tries again

Reads identity D

Updates identity E

Ends

© Kenneth M. Anderson, 2012 18

Installing Clojure

• The next few examples make use of Clojure, a recently created programming
language that is hosted on the JVM

• To install Clojure

• Download Cljr at <http://joyofclojure.com/cljr/>

• Locate the cljr-installer.jar file downloaded as a result of step 1

• Run “java -jar cljr-installer.jar”

• Add $HOME/.cljr/bin to your PATH

• Once that is done, test your installation: “cljr help”

• If that works, try “cljr repl”; if all goes well, you will be presented with a
command prompt that accepts Clojure forms

http://joyofclojure.com/cljr/
http://joyofclojure.com/cljr/

© Kenneth M. Anderson, 2012

Updates and Transactions (I)

• If the value of an identity (known as a “ref” in Clojure) is updated outside of a
transaction, then an exception is thrown

• (def balance (ref 0))
(println "Balance is" @balance)
(ref-set balance 100)
(println "Balance is now" @balance)

• This fails with an IllegalStateException; DEMO

• Clojure is a Lisp-based language built on the JVM

• def is a function used to create bindings between a symbol and a value

• The first line creates a symbol called balance that points at a mutable
identity with an immutable value of 0;

• @ is the “deref” operator. It follows the association to get the ref’s value

19

© Kenneth M. Anderson, 2012

Updates and Transactions (II)

• To create a transaction, we must wrap code that changes a ref with a call to
the function dosync

• (def balance (ref 0))
(println "Balance is" @balance)
(dosync
 (ref-set balance 100))
(println "Balance is now" @balance)

• This time the change is applied and the 2nd println shows the new value

• This is hardly surprising; in this simple program, we do not have other threads
running that have access to balance

• Otherwise, we might find ourselves in a situation where the call to dosync
fails and our transaction is rolled back and tried again

20

© Kenneth M. Anderson, 2012

Increment Revisited (I)

• Recall back in Lecture 4, we demoed a program that

• launched a bunch of threads (10)

• that incremented a shared variable a number of times (3)

• At the time, we demonstrated that the threads “stomped” on the variable

• The final value of the variable was much less than 30

• We then showed how we could protect the variable by using the synchronized
keyword

• Here’s the same program using Clojure and Software Transactional Memory

21

© Kenneth M. Anderson, 2012

Increment Revisited (II)

• First, we need a ref to represent the shared integer variable

• (def mycount (ref 0))

• This creates a ref called mycount and sets its initial value to 0

• Second, we need a vector to store references to our worker threads

• (def workers (atom []))

• We create an empty Clojure vector: []

• And indicate that we’ll be updating it: (atom [])

• A Clojure atom is another “reference type” or “identity” that has an
association with a value that can change over time

• We will use the swap! function to swap the current value for a new value

22

© Kenneth M. Anderson, 2012

Increment Revisited (III)

• Third, we need a function that will be executed by a worker thread

• This is our “task”

• (defn worker [id]

• (dotimes [x 300]

• (dosync

• (alter mycount inc))

• (println (str “worker ” id “: increment ” x))))

• defn creates a function, in this case called worker, which accepts a single
argument, its id; all Clojure functions implement java.util.concurrent.Callable!

• It creates a transaction (dosync) and increments the value of mycount

23

© Kenneth M. Anderson, 2012

Increment Revisited (IV)

• Fourth, we need a function to launch all of our worker threads

• (defn launch []

• (dotimes [x 10]

• (swap! workers conj (future (worker x)))))

• This creates a function launch with zero arguments

• It creates 10 worker threads by calling (future (worker x))

• (future (worker x)) invokes the function “worker” on a separate thread and
returns a future (behind the scenes a java.util.concurrent.Future!) that we
store in our vector by “conjoing” (conj) the future onto the vector

• swap! is used to update our “workers” atom with the new vector

24

© Kenneth M. Anderson, 2012

Increment Revisited (V)

• Fifth, we are now ready to launch the workers, wait for them to be done, and
print out the final value of mycount

• All of this happens on the main thread

• (launch)

• (doseq [w @workers]

• (deref w))

• (println “Final count: ” @mycount)

• The call to doseq loops over the workers and “deref”s them

• This is equivalent to calling get() on java.lang.concurrent.Future

• The main thread blocks on each worker thread until they are all done

25

© Kenneth M. Anderson, 2012

Operations That Change Refs (I)

• We’ve now seen two examples of functions that can change the value of a ref
inside of a transaction

• ref-set: sets the value of the ref (identity)

• alter

• takes a function f and applies it to the current value of the ref

• the in-transaction value of the ref becomes the value returned by f

• this might happen several times during a transaction

• the last value of the ref is committed at the end of the transaction

• the new value is now visible to other threads

26

© Kenneth M. Anderson, 2012

Operations That Change Refs (II)

• The last function that can change the value of a ref inside of a transaction
• commute

• takes a function f and applies it to the current value of the identity
• the in-transaction value of the ref becomes the value returned by f
• then, just as the transaction is committed, we check to see if some

other transaction has changed this ref
• if so, rather than having the transaction fail, we get the most recent

value, apply our function again, and commit that value instead
• Use commute when you do not care about the order in which your

transactions commit
• for instance, updating an integer or adding items to an unsorted collection

(it doesn’t matter whether “ken” or “max” is added to a set first)

27

© Kenneth M. Anderson, 2012

ACI not ACID

• STM Transactions are like database transactions (minus durability)

• Atomicity: STM Transactions are atomic

• all changes get committed (and become visible) or none at all

• Consistency:

• if multiple transactions are running and all of them complete, then the
change to the system is consistent with the cumulative effect of their
actions

• Isolation

• transactions do not see partial changes of other transactions, changes
only become visible once a transaction successfully completes

28

© Kenneth M. Anderson, 2012

How is this implemented? (I)

• Clojure’s STM uses Multiversion Concurrency Control similar to what is found
in databases

• The basic strategy is one of optimistic locking

• We do not pause to take out a lock on the items we want to change
because we are optimistic that we can change them without
contention

• At the start of a transaction, all refs that we access are copied

• We then make changes to the copies

• If any of our refs do get changed by other transactions, our copies are
discarded and we try again (until we succeed or a max_retry_limit is
reached)

• Otherwise are copies are written to memory when the transaction commits

29

© Kenneth M. Anderson, 2012

How is this implemented? (II)

• The gory details

• <http://java.ociweb.com/mark/stm/article.html>

30

http://java.ociweb.com/mark/stm/article.html
http://java.ociweb.com/mark/stm/article.html

© Kenneth M. Anderson, 2012

Examples (I)

• The book provides several examples of STM in action

• concurrentChangeToBalance

• one balance, two transactions (debit and credit);

• code is designed to trigger a collision between the transactions

• as a result, one transaction fails and is retried

• concurrentListChange

• two transactions update a list; original list is immutable and a binding to
it does not change; the ref however points to the updated list

31

© Kenneth M. Anderson, 2012

Examples (II)

• The book provides several examples of STM in action

• writeSkew and noWriteSkew

• two updates to a balance cause a property to be violated

• this occurred because the transactions did not track changes to a ref
that is only accessed not updated during the transaction

• to fix, you need to pass that reference to the function ensure which
then monitors changes to that read-only ref and will cause the
current transaction to fail if that ref changes during the life of the
transaction

32

© Kenneth M. Anderson, 2012

Moving beyond Clojure

• Clojure was NOT the first language to provide access to STM-based
concurrency

• It did help to popularize STM by baking it directly into the language

• Languages that do not support it directly must use frameworks

• There are several options available to use STM in other languages

• Chapter 7 looks at STM in Groovy, Java, JRuby, and Scala

• For Java, options include

• using Clojure from within Java (Java can call Clojure and vice versa)

• Multiverse is a Java-based implementation of STM

• Akka is a Scala-based framework that internally makes use of Multiverse

33

© Kenneth M. Anderson, 2012

Installing Akka

• Akka can be retrieved at

• <http://akka.io/downloads/>

• In particular, download

• <http://download.akka.io/downloads/akka-microkernel-1.3.1.zip>

• Unpack the zip file and put it in a dir;

• that location becomes AKKA_HOME

• On the next slide are instructions for MacOS X and Linux users; Windows
users will need to look for instructions on-line

34

http://akka.io/downloads/
http://akka.io/downloads/
http://download.akka.io/downloads/akka-microkernel-1.3.1.zip
http://download.akka.io/downloads/akka-microkernel-1.3.1.zip

© Kenneth M. Anderson, 2012

Installing Akka (II)

• For MacOS X/Linux under bash, you can edit your .bash_profile to include
something like this

• export AKKA_HOME=/Path/to/akka-microkernel-1.3.1/dir/

• export AKKA_JARS="$AKKA_HOME/lib/scala-library.jar"

• export AKKA_JARS="$AKKA_JARS:$AKKA_HOME/lib/akka-stm-1.3.1.jar"

• export AKKA_JARS="$AKKA_JARS:$AKKA_HOME/lib/akka-actor-1.3.1.jar"

• export AKKA_JARS="$AKKA_JARS:$AKKA_HOME/lib/multiverse-
alpha-0.6.2.jar"

• export AKKA_JARS="$AKKA_JARS:$AKKA_HOME/config"

• export AKKA_JARS= "$AKKA_JARS:."

• We will only need these jars to compile/run the examples from the book

35

© Kenneth M. Anderson, 2012

More on Akka (I)

• Akka provides us with Java APIs that enable STM

• In particular, Akka refs act similar to Clojure refs with one main distinction

• We can update a Akka ref outside of a transaction

• Such updates are wrapped in a transaction automatically

• Akka refs are created using the type akka.stm.Ref<T>

• Otherwise, we programmatically create transactions and then update refs
within them; their behavior is then identical to what we saw with Clojure

• Akka adds the notion of nested transactions. As a result, we can be in a
transaction and call methods that in turn create transactions

• Akka will ensure that all such transactions complete before the outer
transaction can complete

36

© Kenneth M. Anderson, 2012

More on Akka (II)

• When we have a reference to an Akka ref, we can

• retrieve its value with a call to get()

• update its value with a call to swap()

• Both of these calls will create a transaction behind the scenes if we do not
call them from within the context of a transaction

• To run code in a transaction, we create an anonymous instance of the
Atomic<T> class and insert the code to run in a transaction within a call to the
method <T> atomically().

• We’ll see an example in a minute

37

© Kenneth M. Anderson, 2012

Example: Return to Energy Source

• The book updates the EnergySource example from chapter 5 to make use of
Akka’s implementation of STM

• DEMO

• To compile the demo, you will use this command

• javac -classpath $AKKA_JARS *.java

• To run the demo, you will use this command

• java -classpath $AKKA_JARS useEnergySource

• java -classpath $AKKA_JARS Main

• The latter runs a slightly modified version of my own EnergySource using
program that we discussed during Lecture 12

38

© Kenneth M. Anderson, 2012

Discussion (I)

• Changes

• All of the internal instance methods converted to be Akka Refs

• Since we can now trust that the value of the keepRunning flag will be

• both consistent and visible (due to Akka transactions)

• we change the way the replenish task is handled;

• synchronized goes away on methods;

• keepRunning.get() and keepRunning.swap() used instead

• All other updates (including updating both level and usage) are handled
atomically via transactions; no locking required!

39

© Kenneth M. Anderson, 2012

Summary

• In this lecture, we introduced the approach to concurrency known as the
software transactional memory

• Transactions are used to update shared mutable state (refs) with
guaranteed consistency and visibility

• Had to change our notion of “state” to make this possible

• State and Identity are no longer conflated

• Instead, identities maintain associations with immutable state over time

• Transactions are optimistic that contention with other threads will not be
an issue

• they make changes with no locking and then fail if contention occurred

40

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 20: More examples of STM in Java and other languages

• Lecture 21: Agile Project Execution

41

