
© Kenneth M. Anderson, 2012

More on Cucumber:
Steps, Scenarios, and Troubleshooting

CSCI 5828: Foundations of Software Engineering
Lecture 13 — 02/28/2012

1

© Kenneth M. Anderson, 2012

Goals

• Review material from chapters 4-6 of our testing textbook

• Learn more about Cucumber and how it supports behavior-driven design

• More about Steps and Step Definitions

• More about scenarios

• Examining typical problems encountered with Cucumber

• Review additional examples throughout

2

© Kenneth M. Anderson, 2012

Perspective (I)

• Cucumber is aimed at integration and acceptance testing

• It is a testing and communication tool for expressing

• end-to-end tests that cover the major capabilities of your system

• view to controller to model and back

• UI to database and back

• tests that touch all of the subsystems of your system; these
subsystems might exist on multiple nodes

• As such, you will still write unit tests for your system, using some other
testing framework, and run them alongside cucumber-based tests

• Your customer will only be involved with the latter

3

© Kenneth M. Anderson, 2012

Perspective (II)

• To make this work, cucumber requires discipline to ensure that the right
people work together to create the integration tests

• customers must work with developers

• to prevent the developers from writing tests that are too low level

• to ensure that tests are written using customer terminology

• to ensure that what is being tested is important (to the customer)

• developers must work with testers

• testers will be looking for corner cases and good coverage

• developers can use their expertise to ensure that the test cases are
properly decomposed and help with refactoring duplicate behavior

4

© Kenneth M. Anderson, 2012

Perspective (III)

• All three stakeholder roles are needed to balance each other

• customers ensure that tests are “in scope” and important

• developers ensure that tests are well maintained

• also help to ensure that all the information needed to run a test is
present

• testers ensure that the test set is comprehensive

• and that we are not ignoring certain tests because they are hard

• “The first principle is that you must not fool yourself and you are the
easiest person to fool” — Richard Feynman

5

© Kenneth M. Anderson, 2012

Review

• From Lecture 9

• A Cucumber test suite involves

• Features that consist of scenarios

• Scenarios consist of steps

• Each step must have a step definition

• enables leap from spec to code

6

Feature Scenario

Step StepDefinition

Framework

System

Requirements
(text files)

Implementation
(code)

© Kenneth M. Anderson, 2012

Review (and two new tidbits)

7

System Under Test
Features Directory
Feature
Step Definitions Dir
Step Definition File

• Cucumber conventions lead to the above folder/file hierachy

• There can be multiple directories under “features” to help organization

• There can be multiple files in each step_definitions directory to help
organize the code that implements the step definitions

© Kenneth M. Anderson, 2012

Matching Steps (I)

• In lecture 9, we encountered steps that looked like this

• Scenario: Attempt withdrawal using stolen card

• Given I have $100 in my account

• But my card is invalid

• When I request $50

• Then my card should not be returned

• And I should be told to contact the bank

• It turns out the step keywords (Given, When, Then, And, But) are for
humans only; cucumber doesn’t care what you use

8

© Kenneth M. Anderson, 2012

Matching Steps (II)

• Indeed, this is an equivalent scenario

• Scenario: Attempt withdrawal using stolen card

* I have $100 in my account

* my card is invalid

* I request $50

* my card should not be returned

* I should be told to contact the bank

• The “*” is simply used to denote a new step

9

© Kenneth M. Anderson, 2012

Matching Steps (III)

• The reason this is equivalent is that cucumber uses just the highlighted text...

• Scenario: Attempt withdrawal using stolen card

* I have $100 in my account

* my card is invalid

* I request $50

* my card should not be returned

* I should be told to contact the bank

• ... to match a step to its step definition

• All step definitions are read in at run-time and then regular expressions are
used to find a match

10

© Kenneth M. Anderson, 2012

Matching Steps (IV)

• As a result, it does not matter how you organize your step definitions

• Here is a version of calculator that splits its step defs across three files

11

The behavior of
cucumber is
identical to the
previous config.

Three files with
one step def.
each

© Kenneth M. Anderson, 2012

Matching Steps (V)

• This also means that you have to be
careful with how you write your steps

• Scenario 1:

• Given I have $100 in my Account

• When I request $20

• Then $20 should be dispensed

• And my balance is $80

• Scenario 2:

• Given a starting balance of $20 in
my Account

• When I deposit $80

• Then I have $100 in my Account

12

What’s the problem?

© Kenneth M. Anderson, 2012

Matching Steps (V)

• This also means that you have to be
careful with how you write your steps

• Scenario 1:

• Given I have $100 in my Account

• When I request $20

• Then $20 should be dispensed

• And my balance is $80

• Scenario 2:

• Given a starting balance of $20 in
my Account

• When I deposit $80

• Then I have $100 in my Account

13

These two statements are treated as equivalent by Cucumber; but in
one case, it is being used to initialize a scenario; in the second case,
it is being used to assert that something is true of the scenario

© Kenneth M. Anderson, 2012

Matching Steps (VI)

• When you have two equivalent steps

• Given I have $100 in my Account (First Step; used to initialize)

• Then I have $100 in my Account (Last Step; used to assert)

• they will both cause the same step definition to be invoked

• Given /I have \$100 in my Account/ do

• <code goes here>

• end

• The problem is that <code goes here> will do the same thing each time, it will
not be able to customize what it does based on the two different contexts

• How to fix?

14

© Kenneth M. Anderson, 2012

Matching Steps (VII)

• To fix this problem, you need to rewrite the steps

• Given I have deposited $100 in my Account

• Then the balance of my Account should be $100

• Now, it will be clear that

• the first is used to initialize the Account

• and, the latter is used to verify the account’s balance

15

© Kenneth M. Anderson, 2012

The Matching Process

• When invoked, Cucumber reads in all of the step definitions that it can find

• Each step definition causes a pattern to be registered with Cucumber

• It then starts to process each feature file, looking for scenarios

• For each step in a scenario, it checks to see that it matches one of the
registered regular expressions

• If a match is found, the code associated with the step definition is executed
and a result is recorded

• If a match is not found, the step and scenario is considered undefined

• The next step is then processed (assuming the previous step passed)

• Otherwise, the scenario either failed due to an exception in the step or the
scenario is marked pending because the step itself was marked pending

16

© Kenneth M. Anderson, 2012

Regular Expressions (I)

• Regular expressions are a mechanism for specifying patterns that can appear
inside text documents

• Each expression can consist of

• regular characters

• metacharacters

• groups

• anchors

17

© Kenneth M. Anderson, 2012

Regular Expressions (II)

• A regular expression (in ruby) begins with a slash (/) and ends with a slash

• /Ken/

• All regular expressions start and end with the “/” metacharacter. Metacharacters
have special meaning; in this case, slash acts as a delimiter

• The above regular expression consists of three regular characters “K”, “e”, and
“n”, in that order

• It would match these sentences

• Ken is a faculty member

• Pete called Ken on Tuesday

• but not this sentence

• Dirk is a faculty member

18

Here the regular expression is
“unanchored” and so it will match
any sentence that contains the
string “Ken”

© Kenneth M. Anderson, 2012

Regular Expressions (III)

• If you want a metacharacter to act like a regular character, you must escape
the metacharacter using a backslash

• /Ken\/Pete/

• This expression would match the sentence

• The meeting will be led by a faculty member (Ken/Pete)

• But not

• Ken will lead the meeting

• Since backslash is a metacharacter, if you want to match it, you need to
escape it with, you guessed it, another backslash character

• /In LaTeX, use \\cite to reference a journal or conference paper\./

19

© Kenneth M. Anderson, 2012

Regular Expressions (IV)

• A period (.) is a metacharacter that will match any character in the text file

• /I ate slices of pizza\./

• will match

• I ate four slices of pizza.

• I ate five slices of pizza.

• I ate nine slices of pizza.

• Note: since we wanted to make sure that a period appeared at the end of a
matched sentence, we explicitly matched the period by escaping the last
period in the regular expression with a backslash

• Otherwise, the expression would match “I ate nine slices of pizza!”

20

© Kenneth M. Anderson, 2012

Regular Expressions (V)

• If you need to specify that any one of a particular set of characters might
appear in a particular spot in a regular expression, you use a character class

• A character class is specified using square brackets and then can list one or
more ranges of characters assuming ASCII ordering

• /There are [23456789] cows in the field\./

• Matches “There are 3 cows in the field.” but not “There are cows in the field.”

• If characters appear in sequence, you can use a hyphen to express a range

• /Your id number is [A-Z][A-Z][0-9][0-9][0-9]\./

• “Your id number is BZ232.”

21

© Kenneth M. Anderson, 2012

Regular Expressions (VI)

• Beware unintended inclusions of characters when using the hyphen

• [a-Z] is an empty range and [A-z] includes “[”, “\”, “]”, “^”, “–”, and “`” (!!!)

• Instead, you need to do [a-zA-Z]

22

© Kenneth M. Anderson, 2012

Regular Expressions (VII)

• More on character classes

• If you want to match all characters BUT the ones listed, start the class with
the “^” character

• [^0-9] == match any character that is not a digit

• If you need to match a hyphen, list it first

• [-A-Za-z] == match any letter (upper case or lower case) or a hyphen

• If you need to match a “^” character, list it in any position but the first

• [A-Z^a-z]

• Some character classes are predefined: \s (whitespace), \d (digit), etc.

• See page 49 of the testing textbook for examples (not required)

23

© Kenneth M. Anderson, 2012

Regular Expressions (VIII)

• Patterns can be tagged with repetition modifiers

• * — the preceding pattern can appear zero or more times

• + — the preceding pattern can appear one or more times

• ? — the preceding pattern can appear zero or one times

• Alternative choices for a pattern can be separated by the pipe character “|”

• Parens “(“ and “)” can be used to group patterns for alternation

• /There (is|are) [0-9]+ cows? in the field\./

• Matches

• “There are 2 cows in the field.” and “There is 1 cow in the field.” but also
“There is 5 cow in the field.” and “There are 999999993421 cows in the field.”

24

© Kenneth M. Anderson, 2012

Regular Expressions (IX)

• Patterns can be anchored

• ^ at the beginning of a regular expression anchors it at the beginning of a
line of text

• $ at the end of a regular expression anchors it at the end of a line of text

• /^Ken likes to play soccer\.$/

• This regular expression matches only the string “Ken likes to play soccer.”
and nothing else.

25

© Kenneth M. Anderson, 2012

Regular Expressions (X)

• Parens are also used to specify “capture groups”

• That is they “capture” what was matched inside of them and make the
captured pattern available for later processing

• /There are ([1-9][0-9]*) cows in the field./

• The above expression matches sentences like

• “There are 10 cows in the field.” or “There are 19920 cows in the field.”

• Also (unfortunately) “There are 1 cows in the field.”

• AND makes the actual number available

• In a step definition, a captured pattern is passed as an argument to the
step definition’s method body;

26

© Kenneth M. Anderson, 2012

Example from Lecture 9

• Given /^the input "([^"]*)"$/ do |arg1|

• @input = arg1

• end

• We now should understand the regular expression better

• “the input ” appears at the start of the step, followed by a quotation mark

• [^”]* match any character that is not a quotation mark, zero or more times

• the parens around the above pattern captures the result as arg1

• the step must end with a quotation mark

27

© Kenneth M. Anderson, 2012

More about Steps (I)

• Any step can be augmented by a data table

• These are not the same as the table that appeared when using a “Scenario
Outline” within a feature

• Instead, it is a table that appears immediately after a step, like this

Then my shopping list should contain:

| Onions |
| Potatoes |
| Sausages |
| Apples |
| Relish |

• The step definition will then contain an argument where this table is passed
as a first-class object

28

© Kenneth M. Anderson, 2012

More about Steps (II)

• The details of what you can do with the table is provided in the cucumber
documentation
• <http://cukes.info/cucumber/api/ruby/latest/Cucumber/Ast/Table.html>

• The book provides a basic example using Tic-Tac-Toe
• DEMO

• It also hints at what can be accomplished
• Given these Users:

• | name | date of birth |
Michael Jackson	August 29, 1958
Elvis	January 8, 1935
John Lennon	October 9, 1940

• A step definition could process this table at run-time and create 3 instance of
the User class configured as shown and stored in a collection @users

29

http://cukes.info/cucumber/api/ruby/latest/Cucumber/Ast/Table.html
http://cukes.info/cucumber/api/ruby/latest/Cucumber/Ast/Table.html

© Kenneth M. Anderson, 2012

More about Steps (III)

• Any step can also be augmented with a doc string
• Then I should receive an email containing:

• """
Dear Sir,

You are no longer subscribed to our mailing list.

Sincerely,
SpamIsUs
"""

• The entire contents of the doc string will be passed to the step definition
• Your code can then store the string or manipulate/parse it using any of

ruby’s string manipulation capabilities
• We’ll see examples later this semester

30

© Kenneth M. Anderson, 2012

Nesting Steps

• You can have a step definition that turns around and invokes other step
definitions

• This is called “nested steps”

• This is touted initially as a way to create more abstract steps

• A step that says “Given the account is activated for Ken” might delegate to

• “Given the account is created”

• “Given the account has a balance of $50”

• “Given the account has an owner named Ken”

• “Then Ken activates the account”

• But, the book ends up strongly warning you away from this feature

31

© Kenneth M. Anderson, 2012

More on Scenario Outlines

• A scenario outline can have more than one table of examples

• Scenario Outline: Withdraw fixed amount

• Given I have <Balance> in my account

• When I choose to withdraw the fixed amount of <Withdrawal>

• Then I should <Outcome>

• And the balance of my account should be <Remaining>

• Examples: Successful withdrawal
Balance	Withdrawal	Outcome	Remaining
$500	$50	receive $50 cash	$450
$500	$100	receive $100 cash	$400

• Examples: Attempt to withdraw too much
Balance	Withdrawal	Outcome	Remaining
$100	$200	see an error message	$100
$0	$50	see an error message	$0

32

© Kenneth M. Anderson, 2012

Staying Organized

• When creating features and scenarios, cucumber offers two mechanisms to
help organize them

• First, as already mentioned, you can have as many subdirectories under
the features directory of a cucumber project as you want

• features/

• sorting/

• adding_employees/

• calculating_payroll/

• Second, you can classify both features and scenarios with tags

33

© Kenneth M. Anderson, 2012

Tags (I)

• A tag is a word prefixed by the @ character that can appear on the line before
either the keyword Feature or the keyword Scenario

• A tag on Feature will be inherited by all of that feature’s scenarios

• Example

• @employee

• Scenario: Add an employee

• Given Ken is a Person

• And Ken is accepted for a job at our company

• Then Ken is added as an employee

• This scenario is now tagged with the keyword “employee”

34

© Kenneth M. Anderson, 2012

Tags (II)

• You can have multiple tags, separated by spaces

• Example

• @slow @widgets @nightly

• Scenario: Generate overnight report

• Given I am logged in

• And there is a report "Total widget sales history"

• ...

• This scenario has three tags: slow, widgets, and nightly

35

© Kenneth M. Anderson, 2012

Tags (III)

• Now that you have tagged scenarios, they become useful because you can
ask cucumber to run just the scenarios with a particular tag

• cucumber --tags @nightly,@slow

• Cucumber will now run only those features and scenarios that have been
tagged with the “nightly” tag

• This enables you to raise the quality of your development process by
configuring a continuous build system to invoke this command at night
and log the output for review the next day

36

© Kenneth M. Anderson, 2012

Troubleshooting Cucumber

• The authors of the cucumber book identify

• four types of problems that can be encountered

• when trying to incorporate behavior-driven design into a life cycle

• Those problems are

• Flickering Scenarios: Tests are unstable; some randomly fail

• Brittle features: Changes to the system cause existing features to break

• Slow features: The test suite takes too long to run

• Bored stakeholders: Our customer is no longer creating/reading features

37

© Kenneth M. Anderson, 2012

Flickering Scenarios

• A flickering scenario is one that every now and then fails randomly

• The unpredictable nature of the failure reduces team confidence

• This uncertain situation, in turn, reduces the desire to run the test suite

• The biggest problem with this situation is that

• you cannot fix the situation if you cannot get the bug to be reproducible

• Contributing Factors

• Shared Environments

• Leaky Scenarios

• Race Conditions and Sleepy Steps

38

© Kenneth M. Anderson, 2012

Shared Environments

• Shared Environments

• Multiple people use the same machine to test in parallel

• The tests of the two users have the potential of clobbering each other

• Creating/editing the same database at the same time, writing to a
shared XML file, etc. Boom!

• Solution

• Use techniques that isolate one instance of a test from another instance of
that same test

• For instance, have the test create a tmp directory, unique to it, where it
stores all of its data

• Multiple instances of that same test can now be run in parallel

39

© Kenneth M. Anderson, 2012

Leaky Scenarios

• Leaky Scenarios

• One test creates an environment that another test depends on

• The tests have different tags and cucumber gets invoked on just the tag
of the second test: Boom!

• Someone changes the first test, not realizing that a dependency exists:
Boom!

• Solution: design tests to create everything they need from scratch

• Have a really complex system? Use mock objects to simulate non-
essential parts (with respect to the test) of the system

40

© Kenneth M. Anderson, 2012

Race Conditions and Sleepy Steps

• Race Conditions and Sleepy Steps

• You have a complex system and your integration test causes two parts of
the system to run in parallel

• or the system to run in parallel with cucumber

• The test will pass when only the “right” component finishes first

• If the “race” is close, you end up with a flickering scenario

• Developers combat this by causing certain steps to “sleep” to wait for the
concurrent operation to end; hence “sleepy steps”

• Solution: You need to engineer synchronization points for cucumber that
ensures it waits for a system component to finish its work before testing it

41

© Kenneth M. Anderson, 2012

Brittle Features

• Brittle features are ones that break at the slightest change to other parts of
the system

• The design of the underlying system may be too tightly coupled and will
need to be refactored

• Contributing Factors

• Fixture Data

• Duplication

• Leaky Scenarios (see above: related to dependencies between tests)

• Tester Apartheid

42

© Kenneth M. Anderson, 2012

Fixture Data

• Fixture data refers to having a large amount of data stored somewhere in your
test environment that all tests share and come to depend on

• A change in that data can cause tests to fail because developers fail to
realize that lots of tests depend on it

• Large sets of fixture data can slow test suites down if all of the data has to
be loaded for each scenario

• Solution: The book recommends an approach called test data builders in
which all the data for a particular test is created by the test itself

• It points to a ruby-based framework called FactoryGirl as an example of
this approach

• https://github.com/thoughtbot/factory_girl

43

https://github.com/thoughtbot/factory_girl
https://github.com/thoughtbot/factory_girl

© Kenneth M. Anderson, 2012

Duplication

• Duplication refers to having multiple features that test the same thing

• Duplication can

• make scenarios brittle (one change, breaks multiple scenarios)

• slow your test suite down (as the same functionality gets tested again)

• and make your customers bored (can’t attach significance to features)

• Solutions

• Make use of the Background and Scenario Outline keywords

• Watch out for steps with low abstraction

• “User clicks on next button to go to the next page” vs. “Users
navigates to Accounts page”

44

© Kenneth M. Anderson, 2012

Tester Apartheid

• Testers are often regarded as second-class citizens on a software team.

• They may not have as much technical or software engineering skills as
developers but they are

• capable (and good at) writing automation scripts

• good at coming up with corner cases

• good at coming up with comprehensive test suites

• However, if they do not work with developers their test code can degrade if it
is not properly maintained

• Solution: Have testers and developers work together and encourage this as
part of company culture; developers can refactor the test suite when needed
and learn from the testers about how to best test their code

45

© Kenneth M. Anderson, 2012

Slow features

• After creating a lot of tests, it takes a long time for the entire test suite to run
• You accumulate tests because you want to know when a change has

broken previously passing tests; You can back out the change and/or
figure out how to fix the regression

• When test suites take a long time to run
• developers shy away from running them and as such, they start to commit

their changes without testing them!
• This leads quickly to a situation where a broken build is the norm

• Contributing Factors
• Race Conditions and Sleepy Steps (see above)
• Lots of Scenarios
• Big Ball of Mud

46

© Kenneth M. Anderson, 2012

Lots of Scenarios

• Lots of scenarios will, of course, lead to slow test runs

• It takes a certain amount of time for each scenario to run and that adds up

• Often, however, this is a symptom of the system architecture

• For instance, a big, monolithic system might require all the features/
scenarios to live in one place and all be tested together

• Solutions

• Decompose the system architecture and have features that target just
individual components and then add features that target inter-component
interactions

• Divide feature folders into hierarchies and tag features so that subsets can
be easily run independently from one another

47

© Kenneth M. Anderson, 2012

Big Ball of Mud

• No software design has been applied to a system at all

• My friend once encountered a “system” which implemented “shopping cart”
functionality for websites

• it consisted of a single method that when printed covered 42 pages (!)

• These systems have low cohesion (one component doing too many tasks) and
tight coupling (too many dependencies between components)

• As a result, its difficult to test “just one thing” and your scenarios will have
lots of unintended duplication, slowing things down

• Solution:

• Refactor, refactor, refactor

• Have the team focus on the architecture of the system for an iteration or two

48

© Kenneth M. Anderson, 2012

Bored Stakeholders

• Stakeholders become disengaged with the process of developing the test
suite that is needed to help guide development

• They no longer read existing features

• They no contribute to the creation of new features

• They are unwilling to meet with the development team

• Contributing Factors

• Incidental Details

• Imperative Steps

• Duplication (see above)

• Ubiquitous What?

• Siloed Features

49

© Kenneth M. Anderson, 2012

Incidental Details

• Scenarios contain a lot of detail that are not relevant to what is being tested

• The book presents an example that is testing whether an e-mail is received
after it has been sent

• The original example had steps that declared the passwords of the
users but these passwords were never used

• The example was rewritten to be much shorter by abstracting away
most of the incidental details and leaving clear what exactly was being
tested

• Solution

• Always ask yourself if you are writing at the right level of abstraction

• Do not let yourself be influenced by existing step/step definitions

50

© Kenneth M. Anderson, 2012

Imperative Steps

• Imperative steps are ones that are written in the style of “do this; do that”

• The problem is that it is very easy for the steps to be written at too low level
of abstraction, containing lots of unnecessary detail

• Declarative steps are written at a higher level of abstraction and allow the
programmer leeway in how they are carried out

• Contrast this

• User is not logged in; He goes to home page; He is redirected to login page

• with

• User is not authenticated; He tries to view restricted content; System
authenticates user

51

© Kenneth M. Anderson, 2012

Ubiquitous What?

• The team has failed to incorporate the language of the customer (and their
application domain) into the system design and project culture

• If you are developing a ticketing system, you might have words in your
system like concert, performance, artist, venue

• If you ignore those terms, and use arbitrary or terms so generic that there is
no obvious mapping (or the terms could be mapped to anything)

• then your customer can become discouraged and disengaged

• Instead, encourage your team to develop and use a language which is shared
with the customer

• it will reduce mistakes and misunderstandings, improve team confidence
and morale, and foster/strengthen the relationship with the customer

52

© Kenneth M. Anderson, 2012

Siloed Features

• Cucumber is a command line tool and the features it processes are text files
stored in the file system and checked into configuration management systems

• As a result, it is very easy for the features to “hide” from the customer

• They might not feel like they can access the features easily

• Access might require the use of unfamiliar tools (git, text editors)

• Solution

• Publish the features in a way that your customer can access them

• Use scripts, for instance, to convert them to HTML and share them with
the customer via a website

• Engage with the customer to ensure they are always reading/writing the
features and scenarios with the development team

53

© Kenneth M. Anderson, 2012

Summary

• We learned more about Cucumber

• Steps and the step matching process

• Regular expressions and their use in steps

• Scenario Outlines

• Tags

• We also learned about some of the problems that can be encountered when
executing behavior-driven design

• and solutions that can be used to address those problems

54

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 14: Review for Midterm

• Lecture 15: Midterm (!!)

55

