
© Kenneth M. Anderson, 2012

Taming Shared Mutability, Part 1

CSCI 5828: Foundations of Software Engineering
Lecture 11 — 02/21/2012

1

© Kenneth M. Anderson, 2012

Goals

• Explore the services of java.util.concurrent

• ExecutorService

• Callable/Future

• Atomic<Type>

• Queues

• Concurrent data structures

• Locks

• This is a review of the material in Chapter 4 of our concurrency textbook

2

© Kenneth M. Anderson, 2012

Threads in Java prior to JDK 1.5

• Use of Threads in Java used to be painful

• Low level abstractions

• Thread with run() routine

• wait(), notify() to have Threads block and wait for each other

• synchronized keyword on methods and synchronized blocks

• Concurrent versions of Java collections that

• were optimized for safety not performance

• contention on locks forced programs back to sequential levels of
performance

3

© Kenneth M. Anderson, 2012

Threads in Java after JDK 1.4

• With the release of JDK 1.5, new features were added to ease the difficulty of
dealing with threads

• All of the low-level mechanisms are still available if needed

• But, java.util.concurrent provides higher level abstractions

• Thread Pools, Tasks, and Locks

• Concurrent data structures that offer both safety and performance

4

© Kenneth M. Anderson, 2012

Consider AtomicInteger

• AtomicInteger is an addition to JDK 1.5 that is perfect for those situations in
which multiple threads must access and update a shared integer value

• In Lecture 4, I provided an example of

• 10 threads each incrementing the value of a shared integer three times

• The final value of the integer should be 30

• but we demonstrated that it could be as low as 2 or 3 due to the race
condition that occurred between each thread reading/writing the value

• AtomicInteger provides a way to do those updates without interference

• more importantly, the synchronized keyword is not used

• in our code or the JDKs; instead finer grain locks are being used to
maximize performance

5

DEMO

© Kenneth M. Anderson, 2012

Thread Safety and Performance

• By giving us constructs like AtomicInteger

• the JDK raises the level of abstraction that we work at

• while providing us with the best possible performance given the needs of
the application

• Hence the primary addition of java.util.concurrent is the ExecutorService

• We’ve seen the ExecutorService in action previously

• Concurrent Portfolio Calculator and Concurrent Prime Finder

• We’ll look at it in further depth with a new example

• Concurrent File Size Calculator

• and examine various constructs provided by java.util.concurrent

6

© Kenneth M. Anderson, 2012

Coordinating Threads (I)

• A key challenge in the design of concurrent systems is the coordination of
threads

• We may want to

• start them

• wait for them to finish

• assign tasks to them

• retrieve results from them

• allow threads to exchange data

• etc.

7

© Kenneth M. Anderson, 2012

Coordinating Threads (II)

• With the ExecutorService, the most typical case now involves

• submitting a task to a thread pool of type Callable

• receiving a Future in response

• when ready, calling get() on the Future to retrieve the result

• Let’s see this in action with the File Size Calculator

• First, let’s take a look at the sequential version of this program

• See Section 4.2 of your concurrency textbook for details

• Design is straightforward; recursive function that returns either the size for
a single file or for directories, the combined size of all of its children

8

© Kenneth M. Anderson, 2012

Disk Cache

• With programs that target the disk, performance will vary

• The first time through a particular section of the disk, the time will be
slower than subsequent runs on the same section of the disk

• The reason for this is the disk cache

• The operating system will

• take the most recently read sections of disk

• and cache them in memory

• under the assumption that they will be read again fairly soon

• The difference may not be major but it will be there

• First run sequential on /usr: 34.1 seconds; Second run: 30.9 seconds

9

© Kenneth M. Anderson, 2012

First Stab at Concurrency

• Creates a thread pool of 100 threads

• Makes use of recursive function to calculate size of files and directories

• If its handed a file, return the file size

• If its handed a directory

• loop through children

• submit() a task to the thread pool to calculate the size of the child

• Each task is a Callable<Long>

• Thread pool returns a Future<Long> that gets added to an array

• loop through array calling get() on each Future to add up subtotals

• return the result

10

© Kenneth M. Anderson, 2012

Result? DEADLOCK!

• This approach to the program has a flaw that appears on “deep directories”

• Each task adds new tasks to the thread pool and then waits for those tasks
to return

• That means that the calling task is STILL ON THE POOL

• blocked waiting for its subtasks to complete

• If your directory has lots of subdirectories (more than 100 in this case)

• You can get into the situation where each of the 100 threads in the thread
pool are blocked waiting for subdirectory calculations to complete

• when this happens, the program deadlocks

• or thanks to the timeout that we set, eventually the timeout fires
and the program terminates

11

© Kenneth M. Anderson, 2012

Discussion

• This problem is unfortunately because

• the approach is straightforward and understandable

• you’d likely come up with it on a first pass design

• But, a machine’s resources are finite

• you might be able to make this code work on more directories by upping
the number of threads

• but that approach is not generic

• eventually you’ll run into the limit concerning the number of threads the
operating system will allow a single process to create

• and you’ll be stuck

12

© Kenneth M. Anderson, 2012

New Approach: Find Directories, Total Later

• To make progress, we need an approach that

• submits tasks for sub-directories

• but doesn’t require the submitting task to hang around for the results

• New Approach

• Create a data structure that holds the total size of a directory’s files and a
list of all of that directory’s sub-directories

• Tasks now calculate the size of files in their assigned directory and create
a list of all subdirectories; allowing them to complete and not stick around

• The main thread takes care of submitting new tasks and totaling results

• Performance: First Run: 22.7 seconds; Second Run: 12.4 seconds (!)

13

© Kenneth M. Anderson, 2012

Terrific Results But...

• increased complexity!

• We got great results but the approach we used is not intuitive

• Creating a class to store partial (immutable) results

• Creating the function executed by tasks such that it completes quickly

• Adopting a while loop strategy in main to iterate while there were
directories to process

• and then ensuring that the while loop would not terminate until all
directories had been processed

• Let’s look at features that java.util.concurrent has that might reduce the
complexity of the code

14

© Kenneth M. Anderson, 2012

CountDownLatch (I)

• The next approach examines the use of a CountDownLatch

• plus it relaxes our constraint to avoid shared mutablity

• but it achieves the same results with simpler code

• Simplicity is not to be discounted

• it has significant impacts on the ability to maintain software systems

15

© Kenneth M. Anderson, 2012

CountDownLatch (II)

• What’s a CountDownLatch?

• It is a synchronization aid to help coordinate threads

• It maintains a count and has three primary methods

• CountDownLatch(n) - creates the latch with a specific count

• await() - block the calling thread until the latch’s count == 0

• countDown() -- decrement the count of the latch

• Typical scenario:

• create a bunch of threads and start() them

• but don’t let them run() until some point in the future

• i.e. have their first line in run() call await()

16

DEMO

© Kenneth M. Anderson, 2012

New Approach

• Instead of returning subdirectories, we let each task update two shared
variables

• each an instance of AtomicLong (like AtomicInteger but stores long value)

• One AtomicLong stores the total file size

• The second AtomicLong stores the number of “pending file visits”

• This value gets incremented each time we find a subdirectory to visit

• It gets decremented each time we are done processing a subdirectory

• When this value equals zero, we call countDown() on the latch

• The main thread initializes the latch to a value of 1, starts the directory search,
and calls await()

17

© Kenneth M. Anderson, 2012

Performance

• First Run: 24.5 seconds

• Second Run: 10.7 seconds

• Comparable performance to previous approach

• but with simpler code

• We actually anticipate that this approach would be slightly slower than the
previous approach due to the extra thread synchronization

• Each call to AtomicLong involves thread synchronization

• threads do not necessarily block

• (only happens when there is contention)

• but a monitor of some sort will be checked and that slows things down

18

© Kenneth M. Anderson, 2012

Third Approach: Queue (I)

• We have seen two approaches for exchanging data between threads

• Callable/Future and Atomic<Type>

• both techniques ensured that we could pass information between threads

• A third approach is to use a data structure such as a queue to pass
information between threads

• as long as their is space in the queue, producers will not block

• as long as their are items on the queue, consumers will not block

• contention will occur only when the queue is full (producers) or when it is
empty (consumers)

19

© Kenneth M. Anderson, 2012

Third Approach: Queue (II)

• This version of the program creates a blocking queue with 500 slots

• An atomic long is used to keep track of pending file visits

• Tasks traverse the directories as normal, adding file sizes to the queue and
updating the atomic long as they submit more tasks to the thread pool

• The main program kicks off the traversal and then sits in a loop

• that reads items off the queue until there are no more file visits pending and the
queue is empty

• Performance:

• First Run: 24.6 seconds; Second Run: 10.9 seconds

• Same performance, just slightly different abstractions, perhaps simpler

• not by much

20

© Kenneth M. Anderson, 2012

Java 7: Fork-Join API

• The latest version of Java comes with a new type of thread pool and task

• ForkJoinPool and ForkJoinTask

• The key benefit of this new thread pool is that threads can steal tasks
generated by other active tasks

• This solves the problem we encountered with the first approach to the
concurrent file size calculator

• When a task generates a bunch of other tasks and blocks, it’s thread can
let it go and work on the other tasks

• The book shows that this approach is the fastest of all seen so far

• Unfortunately, I can’t run Java 7 (yet) on MacOS X

21

© Kenneth M. Anderson, 2012

Performance Vs. Safety (I)

• Another problem addressed by the java.util.concurrent library is the
performance of certain data structures when accessed by multiple threads

• In the past, you had to synchronize threads before they updated a shared
data structure, such as a hash map or a queue

• to ensure that you didn’t access a key that was being removed by
another thread

• In addition, you were not allowed to change the collection while iterating
over it

• this problem leads to weird strategies, where you have to iterate over a
map or list to search for items you wanted to delete

• but wait until after the iteration was over before you performed the
deletions

22

© Kenneth M. Anderson, 2012

Performance Vs. Safety (II)

• The primary problem with this past approach was that it valued safety over
performance

• If you had a bunch of threads accessing the data structure

• performance slowed to a crawl since they all had to take turns accessing
and modifying the data structure

• But, there are certain situations where “eventual consistency” is fine

• that is, the fact that Thread A doesn’t see the key being inserted by Thread B
during its current iteration is fine

• since Thread A will see it on its next iteration through the map

• furthermore, the fact that Thread A processed a key that was being removed by
Thread B is fine, since it will catch up on the next iteration

• Think Facebook: it’s okay if the number of people who “like” a post is not current

23

© Kenneth M. Anderson, 2012

Performance Vs. Safety (III)

• For these situations, a concurrent version of these data structures vastly
improves performance in concurrent programs

• and allows the data structure to be modified during an iteration leading to
simpler code

• How much faster? The book provides an example of a program that

• has a task that will randomly read, insert, and delete keys into a map

• it takes a read on how long the task takes for a single thread to complete

• and then compares performance as the number of threads goes from
one thread to sixteen;

• Throughput can be 30% higher with multiple threads using concurrent data
structures and can be 70% slower with synchronized data structures

24

DEMO

© Kenneth M. Anderson, 2012

Lock vs synchronized

• The last improvement that java.util.concurrent provides is related to locking

• Before java.util.concurrent, locking was provided by

• synchronized methods

• synchronized blocks

• wait() and notify() -- note: so awful, I’m not going to cover them

• These methods are hard to get right and are slow

• adding synchronized to a method can cause it to run 10 to 100 times
slower!

• To combat this, java.util.concurrent.locks provides the Lock interface

• different Locks are then provided by various concrete implementations

25

© Kenneth M. Anderson, 2012

Lock methods

• lock() -- acquires the lock

• tryLock() -- acquires lock only if it is free

• tryLock(...) -- acquires lock but will time out if the lock is not available

• tryLock() is an improvement over synchronized’s all or nothing approach

• unlock() - release the lock

• One last method is newCondition() -- this produces a condition object
associated with this lock that allows threads to block on a lock until a given
condition is true

• We may return to this style of concurrent programming later in the
semester; see java.util.concurrent.locks.Condition for more details

26

© Kenneth M. Anderson, 2012

Types of Locks

• Given that Lock is an interface, what types of locks are available?

• Just one: ReentrantLock

• This one covers most of the bases

• What’s does “reentrant” mean in this context

• If Thread A acquires Lock B

• if Thread C tries to acquire Lock B, it blocks

• but if Thread A tries to acquire Lock B again, it does so and continues

• the lock will keep track of how many times Thread A calls lock() and will
look for the corresponding unlock() calls

27

© Kenneth M. Anderson, 2012

ReadWriteLock

• java.util.concurrent.locks also provides a ReadWriteLock interface that simply
groups two Locks together, a Read lock and a Write lock

• The package provides only one implementation of this interface

• ReentrantReadWriteLock

• that provides standard semantics

• This type of lock allows a resource to be accessed by lots of readers and
writers

• writers will block until all readers are done;

• readers will block if there is a writer updating the resource

• otherwise multiple readers can acquire a read lock at the same time

28

© Kenneth M. Anderson, 2012

Use of the Lock interface

• The Lock interface allows us

• to stop using the synchronized block technique

• discussed at the beginning of Lecture 6 and used in Homework 2

• Instead, we use code like the following to create transactions for threads

• aMonitor.lock();

• try {

• //...

• } finally {

• aMonitor.unlock();

• }

29

Each thread that requires a transaction to
access to a resource, calls lock(), performs
multiple calls on the resource and then
calls unlock() in a finally block

Use of finally ensures the lock is released no
matter what happens during the transaction

with the exception of deadlock, of course

© Kenneth M. Anderson, 2012

Example

• The book provides an example of using the Lock interface

• Two threads performing deposits and withdrawals on bank accounts, and
transfers between bank accounts

• Transfers require “transaction semantics”

• We must also make sure that Thread A doesn’t acquire Account A at the
same time that Thread B acquires Thread B because deadlock can occur if
they then both need the other account

• To prevent that, it ensures that threads acquire locks on the accounts in
the same order

• Individual methods acquire the lock

• this does not block a transaction since the lock is reentrant

30

DEMO

© Kenneth M. Anderson, 2012

Summary

• We’ve examined some of the problems and the inflexibility with the old
approach to concurrency that characterized JDKs prior to version 1.5

• Low level Thread, Runnable, run(), wait(), notify(), synchronized

• Poor performance of synchronized data structures

• And then examined the benefits of the new approach to concurrency
embodied in java.util.concurrent and its related packages

• Thread pools and multiple ways to coordinate threads

• Concurrent data structures

• fine grain, flexible locking with the new Lock interface and its reentrant
implementation

31

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 12: Taming Shared Mutability, Part 2

• Lecture 13: More on Cucumber: Steps, Scenarios, & Debugging

• Lecture 14: Review for Midterm

32

