
© Kenneth M. Anderson, 2012

Design Approaches for Concurrent Systems

CSCI 5828: Foundations of Software Engineering
Lecture 08 — 02/09/2012

1



© Kenneth M. Anderson, 2012

Goals

• Discuss material in Chapter 3 of our concurrency textbook

• Design Approaches for Concurrent Systems

• Dealing with State

• Shared Mutable Design

• Isolated Mutable Design

• Purely Immutable Design

• Persistent/Immutable Data Structures

• Selecting an approach

2



© Kenneth M. Anderson, 2012

Dealing with State (I)

• In any concurrent program, you have three choices when dealing with state

• shared mutability

• isolated mutability

• pure immutability

• The book describes each approach using a simple example

• Imagine a room with a whiteboard and a group of people

• The task is to get the people to tally up the total number of years the 
people have been working in industry

• In each case, let’s imagine that the whiteboard is an instance variable and 
each person in the room is a separate thread 

3



© Kenneth M. Anderson, 2012

Dealing with State (II)

• Shared mutability is the most familiar for programmers

• We have a set of objects that have methods and instance variables

• We have a set of threads that are accessing these objects in some fashion

• As a result, we have the potential for two or more threads to be accessing 
the same object at the same time and potentially updating the same 
instance variable; this can lead to interference

• Example

• Someone writes “0” on the whiteboard and then asks everyone to come up 
and update the total with their years of experience

• People jump up and… form a line and update the value one at a time

• Analogous to a synchronized increment() method; no true concurrency

4



© Kenneth M. Anderson, 2012

Dealing with State (III)

• Isolated mutability is less familiar but straightforward to understand

• For each mutable variable in a concurrent program, you design the program 
such that only one thread has access to it

• As a result, the behavior of that variable matches what we would expect in a 
single threaded program, even though multiple threads may be running

• Previous Examples

• The “total” variable in the Concurrent portfolio calculator is an example of 
isolated mutability

• The widgets in the ConsiderateWindow example from Lecture 4 are examples 
of isolated mutability; they only ever get updated by the GUI thread

• Current Example: each member texts their years of experience to one person who 
updates the total as the texts arrive; highly concurrent; queue does serialization

5



© Kenneth M. Anderson, 2012

Dealing with State (IV)

• Pure immutability is even less familiar to most developers and the hardest to 
understand

• The basic idea is that you design your program such that a variable can be 
assigned at most one value and that value never changes

• It then doesn’t matter if that variable is accessible to multiple threads

• It’s value will never change on any of them. It is read only

• For those developers comfortable with shared mutability and isolated 
mutability, this seems like an impossible goal

• How can you write a program (at least an interesting program) that does 
not change the state of at least one variable?!

6



© Kenneth M. Anderson, 2012

Immutable Values (I)

• Most programmers are familiar with immutable values

• String foo = “Software Engineering”

• String bar = foo;

• foo and bar point at a value (a string) that will never change.

• foo = foo + “ is cool!”

• Foo now points at a new string; the previous value did not change

• Instead, the original string was copied and the copy was combined with the 
“ is cool!” part to create a new string value (which itself will never change)

• You can’t change the value; if you call foo.replace(), it returns a NEW 
string

7



© Kenneth M. Anderson, 2012

Immutable Values (II)

• Consider extending this idea to other types of values

• Imagine you created a Car class and designed it such that each value is 
immutable;

• Car a = new Car(“blue”, 4, “Chevy”, “Volt”); #blue, Chevy Volt (4 wheels)

• Car b = a.setColor(“red”); #red, Chevy Volt (4 wheels)

• If Car’s values were immutable, then setColor() would return a completely 
new instance of Car that copied all of the values from a except for “blue”, 
set the color to “red”, and returned the copy

• The value pointed at by a would still exist and that particular value would 
never change; likewise the value of b would never change

• the word above that makes developers cringe is “copy”

8



© Kenneth M. Anderson, 2012

Immutable Values (III)

• Do I really want to make an entire copy of a car each time I change something 
about it?

• Maybe, but imagine an immutable linked list that is 10,000 elements long

• If I add a new element to the front of the list, do I really want to copy all 
10,000 elements to a new list?

• List a = < code to create large list >

• List b = a.insert(0, “CU Boulder”);

• If you don’t do this efficiently, after this simple operation, you’ll have two lists 
in memory with 20,001 elements and 20,000 of those elements will be 
duplicated

• Not good

9



© Kenneth M. Anderson, 2012

Immutable Values (IV)

• To address this problem of inefficiency, i.e.,

• duplication of elements as lots of copies are made of an immutable value

• computer scientists developed the idea of persistent data structures

• a fancy way of indicating that the data structure is used to represent lots of 
immutable values but it shares as much structure between the “copies” as 
possible

• If our linked list was implemented as a persistent data structure, then List a 
and List b would both be treated as separate lists that are immutable BUT in 
memory we would have allocated only 10,001 items

• b would point to the head of the list; a would point to the second element 
of the list

10



© Kenneth M. Anderson, 2012 11

CU 
Boulder

UC
Irvine …

B

A



© Kenneth M. Anderson, 2012

Persistent Data Structures

• The book discusses how persistent tries can be used to represent numerous 
immutable values of various types of other data structures including trees, 
maps (hashtables), and lists

• Such data structures can hold one million elements in a tree structure that 
is only four levels deep; any particular element can be accessed very 
quickly

• This is important because it means that you can efficiently use a persistent 
trie to model common data structures but make use of the pure immutability 
approach to design

• More importantly model multiple immutable values of a common data 
structure over time with maximal sharing of common structure

• This ensures that your immutable system is as efficient as possible

12



© Kenneth M. Anderson, 2012

More on Pure Immutability

• Note: It’s not just that you have immutable values but also your variable 
assignments are immutable

• This means, you can’t do this

• String foo = “cat”;

• foo = “dog”;

• Even though foo points at two different immutable objects, this would violate 
immutability

• In a pure immutable design, foo is not allowed to shift from “cat” to “dog” after 
it has been assigned

• Instead, you must use function composition to ensure that new immutable 
values are constructed from previous immutable values and that the result is 
only stored one (or not at all)

13



© Kenneth M. Anderson, 2012

Example

• For our example of totaling years of experience,

• we ask the people in the room to form a chain

• the first person in the chain hands their years of experience to the next 
person in the chain

• all others take the years of experience given to them, adds that number to 
their own, and passes the total to the next person in the chain

• int yearsOfExperience = firstPerson.getExperience();

• where public void getExperience() consists of

• return numYearsOfExperience + self.nextPerson().getExperience(); 

14



© Kenneth M. Anderson, 2012

Selecting an Approach

• Most problems associated with concurrency go away if you design for 
isolated mutability or pure immutability

• This aspects makes them more desirable approaches over shared 
mutability

• Shared mutability is the most difficult design approach to adopt given the 
high number of problems associated with it and the complexity of 
synchronization methods

• It is however the easiest to encounter since all you need to do is write a 
single threaded program and then add multiple threads to it (!)

• We have seen some examples of isolated mutability so far (with more on the 
way) and we will see in future chapters examples of designing for pure 
immutability

15



© Kenneth M. Anderson, 2012

Summary

• We have reviewed the three design approaches available for designing concurrent 
software systems

• Shared Mutable Design

• Easiest to create, hardest to debug

• Isolated Mutable Design

• Easiest “safe” approach to understand

• java.util.concurrent has classes that encourage this style

• Purely Immutable Design

• The hardest to understand and implement but the safest style of all

• requires a new style of programming based on the use of immutable values, 
persistent data structures, recursive structures and functional composition

16



© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 9: Behavior-Driven Development and Cucumber

• Lecture 10: Agile Project Inception

17


