
© Kenneth M. Anderson, 2012

Introduction to Software Testing

CSCI 5828: Foundations of Software Engineering
Lecture 05 — 01/31/2012

1

© Kenneth M. Anderson, 2012

Goals

• Provide introduction to fundamental concepts of software testing

• Terminology

• Testing of Systems

• unit tests, integration tests, system tests, acceptance tests

• Testing of Code

• Black Box

• Gray Box

• White Box

• Code Coverage

2

© Kenneth M. Anderson, 2012

Testing

• Testing is a critical element of software development life cycles

• called software quality control or software quality assurance

• basic goals: validation and verification

• validation: are we building the right product?

• verification: does “X” meet its specification?

• where “X” can be code, a model, a design diagram, a requirement, …

• At each stage, we need to verify that the thing we produce accurately
represents its specification

3

© Kenneth M. Anderson, 2012

Terminology

• An error is a mistake made by an engineer

• often a misunderstanding of a requirement or design specification

• A fault is a manifestation of that error in the code

• what we often call “a bug”

• A failure is an incorrect output/behavior that is caused by executing a fault

• The failure may occur immediately (crash!) or much, much later in the execution

• Testing attempts to surface failures in our software systems

• Debugging attempts to associate failures with faults so they can be removed
from the system

• If a system passes all of its tests, is it free of all faults?

4

© Kenneth M. Anderson, 2012

No!

• Faults may be hiding in portions of the code that only rarely get executed

• “Testing can only be used to prove the existence of faults not their
absence” or “Not all faults have failures”

• Sometimes faults mask each other resulting in no visible failures!

• this is particularly insidious

• However, if we do a good job in creating a test set that

• covers all functional capabilities of a system

• and covers all code using a metric such as “branch coverage”

• Then, having all tests pass increases our confidence that our system has high
quality and can be deployed

5

© Kenneth M. Anderson, 2012 6

Looking for Faults

All possible states/behaviors of a system

© Kenneth M. Anderson, 2012 7

Looking for Faults

Tests are a way of sampling the behaviors of a software system,
looking for failures

As you can see, its
not very
comprehensive

© Kenneth M. Anderson, 2012 8

One way forward? Fold

The testing literature advocates folding the space into equivalent
behaviors and then sampling each partition

© Kenneth M. Anderson, 2012

What does that mean?

9

• Consider a simple example like the greatest common denominator function

• int gcd(int x, int y)

• At first glance, this function has an infinite number of test cases

• But lets fold the space

• x=6 y=9, returns 3, tests common case

• x=2 y=4, returns 2, tests when x is the GCD

• x=3 y=5, returns 1, tests two primes

• x=9 y=0, returns ?, tests zero

• x=-3 y=9, returns ?, tests negative

© Kenneth M. Anderson, 2012

Completeness

• From this discussion, it should be clear that “completely” testing a system
is impossible

• So, we settle for heuristics

• attempt to fold the input space into different functional categories

• then create tests that sample the behavior/output for each functional
partition

• As we will see, we also look at our coverage of the underlying code; are
we hitting all statements, all branches, all loops?

10

© Kenneth M. Anderson, 2012

Continuous Testing

• Testing is a continuous process that should be performed at every stage of a
software development process

• During requirements gathering, for instance, we must continually query the
user, “Did we get this right?”

• Facilitated by an emphasis on iteration throughout a life cycle

• at the end of each iteration

• we check our results to see if what we built is meeting our
requirements (specification)

11

© Kenneth M. Anderson, 2012

Testing the System (I)

• Unit Tests

• Tests that cover low-level aspects of a system

• For each module, does each operation perform as expected

• For method foo(), we’d like to see another method testFoo()

• Integration Tests

• Tests that check that modules work together in combination

• Most projects on schedule until they hit this point (MMM, Brooks)

• All sorts of hidden assumptions are surfaced when code written by
different developers are used in tandem

• Lack of integration testing has led to spectacular failures (Mars Polar Lander)

12

© Kenneth M. Anderson, 2012

Testing the System (II)

• System Tests

• Tests performed by the developer to ensure that all major functionality has
been implemented

• Have all user stories been implemented and function correctly?

• Acceptance Tests

• Tests performed by the user to check that the delivered system meets their
needs

• In large, custom projects, developers will be on-site to install system
and then respond to problems as they arise

13

© Kenneth M. Anderson, 2012

Multi-Level Testing

• Once we have code, we can perform three types of tests

• Black Box Testing

• Does the system behave as predicted by its specification

• Grey Box Testing

• Having a bit of insight into the architecture of the system, does it
behave as predicted by its specification

• White Box Testing

• Since, we have access to most of the code, lets make sure we are
covering all aspects of the code: statements, branches, …

14

© Kenneth M. Anderson, 2012 15

Black Box Testing

SystemInput Actual Output

Spec Expected Output

A black box test passes input to a system, records the
actual output and compares it to the expected output

== ??

Note: if you do not have a spec, then any behavior by the system is correct!

© Kenneth M. Anderson, 2012 16

Results

• if actual output == expected output

• TEST PASSED

• else

• TEST FAILED

• Process

• Write at least one test case per functional capability

• Iterate on code until all tests pass

• Need to automate this process as much as possible

© Kenneth M. Anderson, 2012

Black Box Categories

• Functionality

• User input validation (based off specification)

• Output results

• State transitions

• are there clear states in the system in which the system is supposed to
behave differently based on the state?

• Boundary cases and off-by-one errors

17

© Kenneth M. Anderson, 2012

Grey Box Testing

• Use knowledge of system’s architecture to create a more complete set of
black box tests

• Verifying auditing and logging information

• for each function is the system really updating all internal state correctly

• Data destined for other systems

• System-added information (timestamps, checksums, etc.)

• “Looking for Scraps”

• Is the system correctly cleaning up after itself

• temporary files, memory leaks, data duplication/deletion

18

© Kenneth M. Anderson, 2012

White Box Testing

• Writing test cases with complete knowledge of code

• Format is the same: input, expected output, actual output

• But, now we are looking at

• code coverage (more on this in a minute)

• proper error handling

• working as documented (is method “foo” thread safe?)

• proper handling of resources

• how does the software behave when resources become constrained?

19

© Kenneth M. Anderson, 2012

Code Coverage (I)

• A criteria for knowing white box testing is “complete”

• statement coverage

• write tests until all statements have been executed

• branch coverage (a.k.a. edge coverage)

• write tests until each edge in a program’s control flow graph has been
executed at least once (covers true/false conditions)

• condition coverage

• like branch coverage but with more attention paid to the conditionals (if
compound conditional, ensure that all combinations have been
covered)

20

© Kenneth M. Anderson, 2012

Code Coverage (II)

• A criteria for knowing white box testing is “complete”

• path coverage

• write tests until all paths in a program’s control flow graph have been
executed multiple times as dictated by heuristics, e.g.,

• for each loop, write a test case that executes the loop

• zero times (skips the loop)

• exactly one time

• more than once (exact number depends on context)

21

© Kenneth M. Anderson, 2012

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;
if (Y < 20 and then X mod 2 = 0) then

Y := Y + 20;
else

Y := Y – 20;
end if;
return 2 ∗ X + Y;

end P;
22

A Sample Ada Program to Test

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

T
F

23

P’s Control Flow Graph (CFG)

© Kenneth M. Anderson, 2012 24

White-box Testing Criteria

• Statement Coverage

• Create a test set T such that

• by executing P for each t in T

• each elementary statement of P is executed at least once

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

F
9

T

F

7
F

25

All-Statements Coverage of P

T TT

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-statements-adequate
test set:

26

All-Statements Coverage of P

F

T TT

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-statements-adequate
test set:

(X = 20, Y = 10)

27

All-Statements Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-statements-adequate
test set:

(X = 20, Y = 10)
(X = 20, Y = 30)

28

All-Statements Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012 29

White-box Testing Criteria

• Edge Coverage

• Select a test set T such that

• by executing P for each t in T

• each edge of P’s control flow graph is traversed at least once

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

30

All-Edges Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-edges-adequate test set:

31

All-Edges Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-edges-adequate test set:
(X = 20, Y = 10)

32

All-Edges Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-edges-adequate test set:
(X = 20, Y = 10)
(X =15, Y = 30)

33

All-Edges Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012 34

White-box Testing Criteria

• Condition Coverage

• Select a test set T such that

• by executing P for each t in T

• each edge of P’s control flow graph is traversed at least once

• and all possible values of the constituents of compound
conditions are exercised at least once

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

35

All-Conditions Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-conditions-adequate test set:

36

All-Conditions Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

37

All-Conditions Coverage of P

T T

F

T

Example all-conditions-adequate test set:
(X = 20, Y = 10)

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-conditions-adequate test set:
(X = 20, Y = 10)
(X = 5, Y = 30)

38

All-Conditions Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-conditions-adequate test set:
(X = 20, Y = 10)
(X = 5, Y = 30)
(X = 21, Y = 10)

39

All-Conditions Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012 40

White-box Testing Criteria

• Path Coverage

• Select a test set T such that

• by executing P for each t in T

• all paths leading from the initial to the final node of P’s control flow
graph are traversed at least once

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

41

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:

42

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)

43

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)

44

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)

45

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)

46

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)

47

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)

48

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)

49

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

50

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

51

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

52

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

53

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

54

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

55

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

56

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

57

All-Paths Coverage of P

T T

F

T

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

58

All-Paths Coverage of P

T T

F

T

Skipped the loop

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

59

All-Paths Coverage of P

T T

F

T

Skipped the loop
Executed once

© Kenneth M. Anderson, 2012

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

60

All-Paths Coverage of P

T T

F

T

Skipped the loop
Executed once
Executed twice

And so on… you would also want permutations that exit the loop early

© Kenneth M. Anderson, 2012

Code Coverage Tools

• Doing this by hand would be hard!

• Fortunately, there are tools that can track code coverage metrics for you

• typically just statement and branch coverage

• These systems generate reports that show the percentage of the metric
being achieved

• they will also typically provide a view of the source code annotated to
show which statements and conditions were “hit” by your test suite

61

© Kenneth M. Anderson, 2012

Testing Automation (I)

• It is important that your tests be automated

• More likely to be run

• More likely to catch problems as changes are made

• As the number of tests grow, it can take a long time to run the tests, so it is
important that the running time of each individual test is as small as possible

• If that’s not possible to achieve then

• segregate long running tests from short running tests

• execute the latter multiple times per day

• execute the former at least once per day (they still need to be run!!)

62

© Kenneth M. Anderson, 2012

Testing Automation (II)

• It is important that running tests be easy

• testing frameworks allow tests to be run with a single command

• often as part of the build management process

• We’ll see examples of this later in the semester

63

© Kenneth M. Anderson, 2012

Continuous Integration

• Since test automation is so critical, systems known as continuous integration
frameworks have emerged

• Continuous Integration (CI) systems wrap version control, compilation, and
testing into a single repeatable process

• You create/debug code as usual;

• You then check your code and the CI system builds your code, tests it,
and reports back to you

64

© Kenneth M. Anderson, 2012

Summary

• Testing is one element of software quality assurance

• Verification and Validation can occur in any phase

• Testing of Code involves

• Black Box, Grey Box, and White Box tests

• All require: input, expected output (via spec), actual output

• White box additionally looks for code coverage

• Testing of systems involves

• unit tests, integration tests, system tests and acceptance tests

• Testing should be automated and various tools exists to integrate testing into the
version control and build management processes of a development organization

65

© Kenneth M. Anderson, 2012

Coming Up Next:

• Lecture 6: Agile Methods and Agile Teams

• Lecture 7: Division of Labor and Design Approaches in Concurrency

66

