
Concurrency: processes & threads 25
©Magee/Kramer 2nd Edition

threads in Java

A Thread class manages a single sequential thread of control.
Threads may be created and deleted dynamically.

Thread

 !run()

MyThread

 !run()

The Thread class executes instructions from its method
run(). The actual code executed depends on the
implementation provided for run() in a derived class.

class MyThread extends Thread {
 public void run() {
 //......
 }

}

Creating a thread object:
 Thread a = new MyThread();

Concurrency: processes & threads 26
©Magee/Kramer 2nd Edition

threads in Java

Since Java does not permit multiple inheritance, we often
implement the run() method in a class not derived from Thread but
from the interface Runnable.

Runnable

run()

MyRun

run()

public interface Runnable {
public abstract void run();

}

class MyRun implements Runnable {
public void run() {

 //
 }
}

Thread
target

Creating a thread object:
 Thread b = new Thread(new MyRun());

Concurrency: processes & threads 27
©Magee/Kramer 2nd Edition

thread life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

Created Alive

Terminated

new Thread()

start()

stop(), or
run() returns

The predicate isAlive() can be
used to test if a thread has been started but
not terminated. Once terminated, it cannot
be restarted (cf. mortals).

start() causes the thread to call its
run() method.

Concurrency: processes & threads 28
©Magee/Kramer 2nd Edition

thread alive states in Java

Once started, an alive thread has a number of substates :

Runnable Non-Runnable
suspend()

resume()

yield()

Running

dispatch

start()

stop(), or
run() returns Also, wait() makes a Thread Non-Runnable,

and notify() makes it Runnable
(used in later chapters).

Alive

Concurrency: processes & threads 29
©Magee/Kramer 2nd Edition

Java thread lifecycle - an FSP specification

THREAD = CREATED,
CREATED = (start ->RUNNABLE
 |stop ->TERMINATED),
RUNNING = ({suspend,sleep}->NON_RUNNABLE
 |yield ->RUNNABLE
 |{stop,end} ->TERMINATED
 |run ->RUNNING),
RUNNABLE = (suspend ->NON_RUNNABLE
 |dispatch ->RUNNING
 |stop ->TERMINATED),
NON_RUNNABLE = (resume ->RUNNABLE
 |stop ->TERMINATED),
TERMINATED = STOP.

Concurrency: processes & threads 30
©Magee/Kramer 2nd Edition

start

stop

stop

suspend

dispatch

stop

suspend
sleep

yield

end

run

stop

resume

0 1 2 3 4

Java thread lifecycle - an FSP specification

end, run,
dispatch are
not methods of
class Thread.

States 0 to 4 correspond to CREATED, TERMINATED, RUNNABLE,
RUNNING, and NON-RUNNABLE respectively.

