
© University of Colorado, 2010

Ending an Iteration
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 24 — 04/08/2010

1



Goals

Review material from Chapter 9 of Pilone & Miles

Ending an Iteration

System Testing

Bug Reports

Iteration Review

2



Ending an Iteration

Following the agile practices we’ve covered each iteration 
will have

customer-driven functionality (user stories; feedback)

compiling code & monitored builds (continuous integration)

solid test coverage and continuously tested code (TDD)

reliable progress tracking (burn-down chart)

pacing that adapts to the team (iteration plan; velocity)

and with this you may find yourself with spare time at the 
end of an iteration

3



What else can be done?

At the end of an iteration, you can reflect on things you’d like to 
add to daily work practice to provide additional benefits

Such as

process improvements (what’s not working?)

system testing (we’ve got unit tests and integration tests)

refactoring of code based on lessons learned

code cleanup and documentation updates

design patterns

environment updates, R&D, personal development time

4



Data in Burn Down

One way to reflect on the iteration is to look at the burn-
down chart

It can provide insight into the effectiveness of the team

Were we ahead, were we always behind?

Are we good at adapting to change?

5



Unplanned Tasks 6

Burn Down

Days Left

Work

Left

0

44

20 0

Ideal

Burn Down

Rate

This burn-down chart 
shows the team getting 
burned with unplanned 
tasks and/or user stories

The drop to zero at 
the end is NOT the 
result of some heroic 
effort on the part of 
the team; likely it is 
simply a result of 
scoping down



Bad Estimates 7

Burn Down

Days Left

Work

Left

0

44

20 0

Ideal

Burn Down

Rate

This burn-down chart 
shows the team had bad 
estimates; everything 
took longer than planned

Not getting to zero 
means the team 
needs to learn how 
to re-scope: delaying 
tasks and stories to 
subsequent iterations



Integrating System Tests 8

Our techniques do not provide time for system testing
A system test exercises the functionality of the system from 
“front to back” (UI to persistence layer) in real-world black-
box scenarios

Developers are too biased to do system testing, they know 
the code too well and do not necessarily have access to 
realistic test data
Your end users should be the ones performing system tests 
on real data

If that’s not possible, you need a testing team!



Off by One

In each iteration, the developers are concerned with the 
current set of user stories

They test constantly but those are unit/integration tests

A test team, then, can perform system testing on system 
n-1 during iteration n

During iteration 1, the test team gets ready for iteration 2
Reviewing stories, writing tests, installing tools, etc.

This leads to more being done in each iteration
and the book views them as separate iteration cycles

that is, more iterations

9



More iterations, more 
problems

Running two iteration cycles means

LOTS more coordination which requires LOTS more 
communication

Will require “cross pollination” of standup meetings

Forces testing into a “box”: fixed time step

May not be able to cover all functionality within a single 
iteration

Bug fixing mixes in with new work

If the testing team is finding bugs, guess who has to fix them?

Tests are written against a moving target

10



More problems, more talk

In order to deal with these problems, you just need

MORE communication to enable better coordination

and remember, in agile approaches, we value direct 
communication

We do have to worry about this on one level (Mythical Man 
Month) but remember that agile approaches avoid a lot of the 
documentation that slow traditional SE approaches down

11



Effective System Testing

Good, frequent communication (devs., test team, customer)

Known starting and ending state of system

Document your test suites

Establish clear success criteria (when can we go live?)

Automate your tests

Devs and test team work together (avoid fights!)

Test team understands big picture view of system

Accurate system documentation

12



Test results?

We eventually want to see all tests pass
but before we do, the results of testing are bug reports

Bug life cycle
Tester finds bug
Creates a bug report and submits it to issue tracking system
Developers create a story or task to fix the bug

Enters iteration plan and handled as normal

Developers fix the bug
Tester checks the fix and verifies the bug is gone
Tester updates the bug report (sets status to closed/resolved)

13



Bug Trackers

Plenty of systems out there to do bug tracking

FogBugz, Bugzilla, Mantis, TestTrackPro, ClearQuest

Important because they

let you prioritize bug reports

related to success criteria “go live when only priority 4 bugs 
remain”

let you keep track of everything related to a bug fix

let you generate important metrics related to life cycle quality

bug submission rate? location of bugs? bugs outstanding?

14



Bug Reports

Good bug reports contain

A summary that describes the bug in 1-2 sentences

The steps needed to reproduce the bug (see it in action)

Expected Output vs. Actual Output

Configuration Information: Platform, version, etc.

Severity: how bad is the impact of this bug?

Priority: how quickly do we need to fix this bug?

Current Status

15



Iteration Review

At the end of an iteration, take time to reflect and identify 
how the process can change to make things run smoothly

A good iteration review requires that you

prepare ahead of time: bring a list of things to discuss

be forward-looking: what should we do to improve the next 
iteration?

calculate your metrics: velocity, burn-down rate, etc.

review a standard set of questions that helps the team look 
for opportunities to improve

16



Review Questions

Was the quality of our work acceptable?

Was the pace acceptable?

Are you comfortable with your current work assignments?

Are our tools getting in the way? Are there new tools to 
consider?

Was our process effective? Does something need to 
change?

Performance problems? Bugs to discuss?

Testing effective? “Bad smells” to get rid of

17



If you have extra time

If you have “free” days at the end of an iteration

Fix bugs and/or refactor and/or update documentation

Tackle a user story from the next iteration

Prototype solutions needed in the next iteration

Training or Learning Time: Google’s “20% time” practice

18



Wrapping Up

The end of an iteration is a time for reflection

What should we change to make the next iteration better?

It is also a time for catching up or getting ahead

Learn to use iterations well

Pay attention to burn-down rates and what they tell you 
about the team

Pace the iteration ; if you have too much to do, scope the 
iteration down

Review each iteration to continuously improve your process

19



Coming Up

Lectures 25 and 26:

Not being held; be on the lookout for homework 4 instead

Lecture 27: The Next Iteration

Read Chapter 10 of Head First Software Development

Lecture 28: Model-Driven Design

Last chapter from optional textbook

No reading assignment

20


