
© University of Colorado, 2010

Model-Based
Approach to
Designing Concurrent
Systems (Part One)
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 12 — 02/18/2010

1

Credit Where Credit is
Due

Portions of these slides drawn from the course materials
developed by Jeff Magee and Jeff Kramer for their excellent
book

Concurrency: State Models and Java Programming, 2nd Ed.

Portions are thus copyright © John Wiley & Sons, Ltd. 2006

2

Goals

Review material from chapters 1, 2 from the optional
textbook (Concurrency: State Models and Java Programming by Magee and Kramer)

Present a model-based approach to designing concurrent
systems

What do we mean by model-based software engineering?

Examine fundamental approach used in this book:

Concepts, Modeling, Practice

Finite State Processes and Labelled Transition Systems

3

More on the Authors:
“The Two Jeffs”

Jeff Kramer
Dean of the Faculty of Engineering and Professor of Distributed Computing
at the Department of Computing at Imperial College London

ACM Fellow; Editor of IEEE’s Transactions on Software Engineering

Winner of numerous software engineering awards including best paper and
outstanding research awards

Jeff Magee
Professor at the Department of Computing at Imperial College London

Long time member of the SE community with more than 70 journal and
conference publications!

This book is based on their SE research into modeling concurrency over the
past 20 years

4

Ex.: Cruise Control System
Requirements

Controlled by three buttons
on, off, resume

When ignition is switched on
and on button pressed, current
speed is recorded and system
maintains the speed of the car
at the recorded setting
Pressing the brake, the
accelerator, or the off button
disables the system
Pressing resume re-enables the
system

Two Threads: Engine and Control
Is the system safe?
Would testing reveal all errors?
How many paths through system?

5

http://www.doc.ic.ac.uk/~jnm/book/book_applets/concurrency.html
http://www.doc.ic.ac.uk/~jnm/book/book_applets/concurrency.html

Models to the Rescue!

To answer, we need a model of the concurrent behavior of
the system and then we need to analyze it

This is one benefit of models, they focus on one particular
aspect of the world and ignore all others

Consider the model on the front of the Concurrency book

The picture shows a real-world train next to its model

Depending on the model, you can ask certain questions and
get answers that reflect the answers you would get if you
asked “the real system”

6

Models to the Rescue!

For the train model, you might be able to ask

What color is the train? How long is it? How many cars does
it have?

But not

What’s the train’s maximum speed?

How does it behave when a car derails?

7

Models, continued

A model is a simplified representation of the real world

A model airplane, e.g., used in wind tunnels, models only the
external shape of the airplane

The reduction in scale and complexity achieved by modeling
allows engineers to analyze properties of the model

The earliest models were physical (like our model train)

modern models tend to be mathematical and analyzed by
computers

8

Models, continued

Engineers use models to gain confidence in the adequacy
and validity of a proposed design

focus on an aspect of interest — concurrency
can animate model to visualize a behavior
can analyze model to verify properties

Models support hypothesis testing
we make observations and test against our model’s
predictions
if predictions match observations, we gain confidence in the
model; otherwise, we update model and try again

9

Models for Concurrency

When modeling concurrency

our book makes use of a type of finite state machine known
as a labeled transition system (LTS)

LTS == Model

These machines are described textually with a specification
language called finite state processes (FSP)

FSP == Specification Language

Used to generate an instance of an LTS

10

Models for Concurrency

These machines can be displayed and analyzed by an
analysis tool called LTSA

Note: LTSA requires a Java 2 run time system, version 1.5.0
or later

On Windows and Mac OS systems, you can run the LTSA
tool by double clicking on its jar file

Note: Its not the most intuitive piece of software, but once
you “grok it”, it provides all of the advertised functionality

11

Modeling the Cruise
Control System

We won’t model the entire system

lets look at a simplified example

Given the following specification
CRUISE = (engineOn -> RUNNING),

RUNNING = (speed -> RUNNING | engineOFF -> CRUISE).

We can generate a finite state machine that looks like this

12

13

LTSA allows us to enter
specifications and
generate state machines
like the ones on the
previous slide

It can also be used to
“animate” or step through
the state machine

Lets see a demo

Note: animation at left
shows the problem we
encountered before with
the cruise control system

LTSA

LTSA, continued

Using a modeling tool, like LTSA, allows us to understand
the concurrent behaviors of systems like the cruise control
system, BEFORE they are implemented

This can save a lot of time and money, as it is typically easier
to test and evolve a model's behavior than it is to implement
the system in a programming language

14

Applying Concepts/
Models via Programming

The optional textbook uses Java to enable practice of these
concepts

Java is

widely available, generally accepted, and portable

provides sound set of concurrency features

Java is used for all examples, demo programs, and
homework exercises in the optional textbook

15

Summary So Far

Concepts

We adopt a model-based approach for the design and
construction of concurrent programs

Models

finite state machines to represent concurrent behavior

Practice

Book uses Java for constructing concurrent programs

We will be presenting numerous examples to illustrate
concepts, models and demonstration programs

16

Modeling Sequential
Processes

We structure complex systems as sets of simpler activities

each represented as a sequential process

Processes can overlap or be concurrent, so as

to reflect the concurrency inherent in the physical world

or to offload time-consuming tasks

or to manage communications and/or other devices

Designing concurrent software can be complex/error prone

A rigorous engineering approach is essential

17

Overall Approach 18

Concept of a process as
a sequence of actions

Model processes as
finite state machines

Program processes as
threads in Java

Modeling Processes 19

Models are described using state machines

Labeled Transition System (LTS)

Described textually as finite state processes (FSP)

They are displayed and analyzed by the LTSA tool

Summary

FSP: textual form

LTS: data structure

LTSA: visualizer and analyzer

Modeling Processes

A process is the execution of a sequential program. It is
modeled as a finite state machine that moves from state to
state by executing a sequence of atomic actions

To the right is a “light switch”

it has two states and two actions

what does state zero represent?

A trace is a sequence of actions

For the light switch: on ➞ off ➞ on ➞ off ➞ on …

20

Specifying a process

FSP — action prefix

If x is an action and P a process then (x ➞ P) describes a
process that initially engages in the action x and then behaves
exactly as described by P. i.e. (x ➞ P) is also a process.

ONESHOT = (once -> STOP).

STOP is a predefined process
that tells LTSA to halt.

ONESHOT is a process; it executes “once” before halting

Convention: actions begin with lowercase letters; PROCESSES use
all uppercase letters

21

Repetitive behavior

Repetitive behavior uses recursion:

SWITCH = OFF,
OFF = (on -> ON),
ON = (off -> OFF).

You can apply substitution

SWITCH = OFF,

OFF = (on -> (off -> OFF)).

And again, to get a succinct definition

SWITCH = (on -> off -> SWITCH).

22

All three
produce the
above LTS

Animation 23

1. click
actions

2. see updates;
(LTSA is not
perfect; it can’t
always show
the updates)

3. view
your
trace
here

Simple Example 24

TRAFFICLIGHT = (red -> green -> yellow -> TRAFFICLIGHT).

Trace

red ➞ green ➞ yellow ➞ red ➞ green ➞ yellow ➞ …

Adding Choice

If x and y are actions then
(x ➞ P | y ➞ Q) is a process
which initially engages in
either of the actions x or y.

DRINKS =
(red -> coffee-> DRINKS
|blue ->tea -> DRINKS).

red and blue are considered
input actions; coffee and tea
are output actions

25

An input action is one which
participates in a choice; someone
has to select an action before the
process can go on.

Nondeterministic Choice

Process (x ➞ P | x ➞ Q) describes a process which engages in x
and then behaves as either P or Q.

As you can see, we have the same action on multiple branches

COIN = (toss -> HEADS | toss -> TAILS),
HEADS = (heads -> COIN),
TAILS = (tails -> COIN).

Tossing a coin.

In this case, LTSA
will randomly select a branch
to execute.

26

Modeling Failure

We can use nondeterminism to model failure

Here we want to model a communication channel that is
sometimes unreliable; an input can sometimes fail to produce
an output

CHAN =
(in -> CHAN
|in -> out -> CHAN).

27

Adding modeling power

In order to increase the power of our models, we can add
indexes to both actions and processes

We can add an index to an action, like this…

in[i : 0 .. 3]

…which requires us to pick a value for the index when we
execute the action

The index can then be referenced in later actions, carrying
the value we picked

out[i]

28

Example

BUFF = (in[i: 0..3] -> out[i] -> BUFF).

Single slot buffer

what goes in

must come out

29

indexes are shortcuts

Note, this:

BUFF = (in[i: 0..3] -> out[i] -> BUFF).

is equivalent to this:

BUFF = (in[0]->out[0]->BUFF
 |in[1]->out[1]->BUFF
 |in[2]->out[2]->BUFF
 |in[3]->out[3]->BUFF).

indexed actions simply expand to all possible choices
behind the scenes

30

Magic Numbers

In this process

BUFF = (in[i: 0..3] -> out[i] -> BUFF).

“3” is a magic number

We can add flexibility to our models via indexed processes

BUFF(N=3) = (in[i:0..N]->out[i]-> BUFF).

Now we can change N to whatever value we need

31

Computation

Indexes can be used to model calculation

const N = 1
range T = 0..N
range R = 0..2*N

SUM = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

Here, our choices for indexes a and b influence the starting
value s for process TOTAL; a + b is calculated and passed
to TOTAL, setting the value for index s

32

LTS for SUM 33

Guarded Actions 34

The choice (when B x -> P | y -> Q) means that when the
guard B is true, then the actions x and y are both eligible to
be chosen, otherwise only y can be selected.

COUNT(N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
 |when(i>0) dec->COUNT[i-1]).

Process Alphabets

The alphabet of a process is the set of actions in which it
can engage; LTSA can show a process alphabet on request

Process alphabets are implicitly defined by the actions in
the process definition.

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =
 (when(i>0) tick->COUNTDOWN[i-1]
 | when(i==0)beep->STOP
 | stop->STOP).

The alphabet of COUNTDOWN is “start”, “tick”, “beep”,
and “stop”

35

Implementing Models

Implementing a model is typically straightforward
public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {
 while(true) {
 if (counter == null) return;
 if (i>0) { tick(); --i; }
 if (i==0) { beep(); return;}
 }
 }

36

Implementation of
COUNTDOWN

imagine this placed inside
of a class that implements

Runnable

37

Concurrency: processes & threads 26
©Magee/Kramer 2nd Edition

threads in Java

A Thread class manages a single sequential thread of control.
Threads may be created and deleted dynamically.

Thread

run()

MyThread

run()

The Thread class executes instructions from its method
run(). The actual code executed depends on the
implementation provided for run() in a derived class.

class MyThread extends Thread {
 public void run() {
 //......
 }

}

Creating a thread object:
 Thread a = new MyThread();

38

Concurrency: processes & threads 27
©Magee/Kramer 2nd Edition

threads in Java

Since Java does not permit multiple inheritance, we often
implement the run() method in a class not derived from Thread but
from the interface Runnable.

Runnable

run()

MyRun

run()

public interface Runnable {
public abstract void run();

}

class MyRun implements Runnable {
public void run() {

 //
 }
}

Thread
target

Creating a thread object:
 Thread b = new Thread(new MyRun());

39

Concurrency: processes & threads 28
©Magee/Kramer 2nd Edition

thread life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

Created Alive

Terminated

new Thread()

start()

stop(), or
run() returns

The predicate isAlive() can be
used to test if a thread has been started but
not terminated. Once terminated, it cannot
be restarted (cf. mortals).

start() causes the thread to call its
run() method.

40

Concurrency: processes & threads 29
©Magee/Kramer 2nd Edition

thread alive states in Java

Once started, an alive thread has a number of substates :

Runnable Non-Runnable
suspend()

resume()

yield()

Running

dispatch

start()

stop(), or
run() returns Also, wait() makes a Thread Non-Runnable,

and notify() makes it Runnable
(used in later chapters).

Alive

41

Concurrency: processes & threads 30
©Magee/Kramer 2nd Edition

Java thread lifecycle - an FSP specification

THREAD = CREATED,
CREATED = (start ->RUNNABLE
 |stop ->TERMINATED),
RUNNING = ({suspend,sleep}->NON_RUNNABLE
 |yield ->RUNNABLE
 |{stop,end} ->TERMINATED
 |run ->RUNNING),
RUNNABLE = (suspend ->NON_RUNNABLE
 |dispatch ->RUNNING
 |stop ->TERMINATED),
NON_RUNNABLE = (resume ->RUNNABLE
 |stop ->TERMINATED),
TERMINATED = STOP.

42

Concurrency: processes & threads 31
©Magee/Kramer 2nd Edition

Java thread lifecycle - an FSP specification

end, run,
dispatch are
not methods of
class Thread.

States 0 to 4 correspond to CREATED, TERMINATED, RUNNABLE,
RUNNING, and NON-RUNNABLE respectively.

start

stop

stop

suspend

dispatch

stop

suspend
sleep

yield

end

run

stop

resume

0 1 2 3 4

43

Concurrency: processes & threads 32
©Magee/Kramer 2nd Edition

CountDown timer example

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

 (when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0)beep->STOP

 |stop->STOP
).

Implementation in Java?

44

Concurrency: processes & threads 33
©Magee/Kramer 2nd Edition

CountDown timer - class diagram

The class CountDown derives from Applet and contains the
implementation of the run() method which is required by Thread.

Applet

init()
start()
stop()
run()
tick()
beep()

Runnable

CountDown

NumberCanvas

setvalue()

Threadcounter

display

target

The class NumberCanvas
provides the display canvas.

45

Concurrency: processes & threads 34
©Magee/Kramer 2nd Edition

CountDown class

public class CountDown extends Applet
 implements Runnable {
 Thread counter; int i;
 final static int N = 10;
 AudioClip beepSound, tickSound;
 NumberCanvas display;

 public void init() {...}
 public void start() {...}
 public void stop() {...}
 public void run() {...}
 private void tick() {...}
 private void beep() {...}
}

46

Concurrency: processes & threads 35
©Magee/Kramer 2nd Edition

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {
 while(true) {
 if (counter == null) return;
 if (i>0) { tick(); --i; }
 if (i==0) { beep(); return;}
 }
 }

COUNTDOWN Model
start -> CD[3]

STOP -> [predefined in FSP
to end a process]

CD[i] process

 recursion transformed
 into while loop

 STOP when run() returns

run -> CD[i:0..3] =!
 (while (i>0) tick -> CD[i-1]!
 |when (i==0) beep -> STOP!
).!

47

Concurrency: processes & threads 36
©Magee/Kramer 2nd Edition

CountDown

 counter thread

start()

new Thread(this)

target.run()

created counter.start()

alive

terminated

init()

tick()

beep()

CountDown execution

48

Concurrency: processes & threads 37
©Magee/Kramer 2nd Edition

CountDown

 counter thread

stop()

new Thread(this)

target.run()

created counter.start()

counter=null

alive

terminated

tick()
tick()

CountDown execution

start()
init()

Wrapping Up

Introduced the syntax of FSP and showed how to use it to
create finite state machines that model single threaded
processes

actions, choices, guarded choices, action/process indexes

Learned about LTSA and how to use it

In our next lecture, we’ll see how to model multiple
concurrent processes and their interactions

49

Coming Up

Lecture 13: Model-Based Approach to Designing
Concurrent Systems, Part 2

Lecture 14 will be a review for the Midterm

Chapters 1-6 of Pilone & Miles

Chapters 1-4 of Breshears

Lectures 12 and 13

50

