
© University of Colorado, 2010

Eight Simple Rules 
for Designing 
Concurrent Systems
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 10 — 02/11/2010

1



Lecture Goals

Review of material in Chapter 4 of Breshears

Eight Simple Rules…

2



An Art Not a Science…

In the chapter, Breshears presents eight guidelines for 
designing concurrent applications

We make use of guidelines as designing multithreaded 
applications is still more of an art than a science

That is not to say that we don’t have methodologies or 
techniques to draw upon

we just covered the main approaches in the prior lectures

But, for any particular program, there are multiple ways to 
make it concurrent and it may not be clear which way to go

3



Rule 1

Identify Truly Independent Computations

If you can’t identify (in a single threaded application)
computations that can be done in parallel, you’re out of luck

And, in last lecture, we looked at situations that indeed can’t 
be made parallel

But opportunities will be there if you’re willing to look hard 
enough: from the real world, DVD rental fulfillment

pulling discs, packing them, shipping them: all independent

Consider: File Browsers: what might be independent?

4



Rule 2

Implement Concurrency at the Highest Level Possible

When discussing “What’s Not Parallel” a common refrain was 
“you can’t make this parallel, so see if its part of a larger 
computation that CAN be made parallel”

This is such good advice, it was promoted to being a 
guideline!

Two approaches: bottom up, top down

5



Rule 2: Bottom Up

Our methodology says to create a concurrent program
start with a tuned, single-threaded program

and use a profiler to find out where it spends most of its time

In the bottom-up approach, you start at those “hot spots” 
and work up; typically, a hotspot will be a loop of some sort

See if you can thread the loop
If not, move up the call chain, looking for the next loop and see 
if it can be made parallel…

If so, still look up the call chain for other opportunities, first.
Why? Granularity! You want coarse-grained tasks for your threads

6



Rule 2: Top Down

With knowledge of the location of the hot spot

start by looking at the whole application and see if there are 
parallelization opportunities on the large-scale structure that 
contains the hot spot

if so, you’ve probably found a nice coarse-grained task to 
assign to your threads

If not, move lower in the code towards the hot spot, looking for 
the first opportunity to make the code concurrent

7



Rule 3

Plan Early for Scalability
The number of cores will keep increasing

You should design your system to take advantage of more 
cores as they become available

Make the number of cores an input variable and design from 
there

In particular, designing systems via data decomposition 
techniques will provide more scalable systems

humans are always finding more data to process!

More data, more tasks; if more cores arrive, you’re ready

8



Rule 4

Make use of Thread-Safe Libraries Wherever Possible
First, software reuse!

Don’t fall prey to Not Invented Here Syndrome

if code already exists to do what you need, use it!

Second, more libraries are becoming multithread aware
That is, they are being built to perform operations concurrently

Third, if you make use of libraries, ensure they are thread-
safe; if not, you’ll need to synchronize calls to the library

Global variables hiding in the library may prevent even this, if 
the code is not reentrant ; if so, you may need to abandon it

9



Rule 5

Use the Right Threading Model

Avoid the use of explicit threads if you can get away with it

They are hard to get right, as we’ve seen

Look at libraries that abstract away the need for explicit 
threads

We’ll be looking at OpenMP and Intel Threading Building 
Blocks in Chapter 5

And, I’ll be discussing Scala’s agent model, Go’s goroutines 
and Clojure’s concurrency primitives

all of these models hide explicit threads from the programmer

10



Rule 6

Never Assume a Particular Order of Execution

With multiple threads, as we’ve seen, the scheduling of 
atomic statements is nondeterministic

If you care about the ordering of one thread’s execution with 
respect to another, you have to impose synchronization

But, to get the best performance, you want to avoid 
synchronization as much as possible

in particular, you want high granularity tasks that don’t require 
synchronization; this allows your cores to run as fast as 
possible on each task they’re given

11



Rule 7

Use Thread-Local Storage Whenever Possible or Associate 
Locks with specific data

Related to Rule 6; the more your threads can use thread-local 
storage, the less you will need synchronization

Otherwise, associate a single lock with a single data item

in which a data item might be a huge data structure

This makes it easier for the developer to understand the 
system; “if I need to update data item A, then I need to 
acquire lock A first”

12



Rule 8

Dare to Change the Algorithm for a Better Chance of 
Concurrency

Sometimes a tuned, single-threaded program makes use of 
an algorithm which is not amenable to parallelization

They might have picked that algorithm for performance reasons

Strassen’s Algorithm O(n2.81) vs. the triple-nested loop algorithm 
to perform matrix multiplication O(n3)

Change the algorithm used by the single-threaded program 
to see if you can then make that new algorithm concurrent

BUT: when measuring speedup, compare to the original!!

13



Coming Up Next

Lecture 11: Good Enough Design

Chapter 5 of Pilone & Miles

Lecture 12: Model-Based Approach to Concurrency

Material will come from optional textbook

14


