
© University of Colorado, 2010

Proving Correctness
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 9 — 02/09/2010

1

Lecture Goals

Finish review of material in Chapter 2 of Breshears

Design Models for Concurrent Algorithms

Data Decomposition

Example

What’s Not Parallel

Begin review of material in Chapter 3 of Breshears

Verification of Parallel Algorithms

Performance Metrics

2

Design Models

Two primary design models for concurrent algorithms

Task Decomposition

identify tasks (computations) that can occur in any order

assign such tasks to threads and run concurrently

DISCUSSED IN LECTURE 6

Data Decomposition

program has large data structures where individual data
elements can largely be calculated independently

data decomposition implies task decomposition in these cases

3

Data Decomposition

A common opportunity for making a single-threaded
application concurrent is looking for updates to one or more
elements of a large data structure

if the update computations are independent of each other

you can

divide up the data structure

assign the updates to tasks running on separate threads

The trick is deciding how to split up the data structure

and how independent the updates actually are

4

Data Structures

Data structures amenable to decomposition?

Arrays, Arrays and Arrays

Split along one or more dimensions

Lists

if the list has index pointers

Trees

as long as the tree doesn’t need to be balanced once it is built

5

Creating Tasks...

Regardless of data structure

the decomposition into chunks will guide task creation

If updates are truly independent, then no locking required

If updates share information, then synchronization will be
needed

load balancing is a concern

if the data structure is not regular, then some threads will have
more work to do than others

if so, adopt a dynamic scheduling approach to divide up the work

6

Three Questions of DD

Three Questions of Data Decomposition

How should you divide the data into chunks?

How do you ensure that a task has the information it needs?

How are data chunks assigned to threads?

7

Doing Division

The key concerns in dividing up the data structure are

make sure you have at least one “data chunk” per thread
(more is better)

make sure there is enough work per chunk to trivialize the
overhead incurred by concurrent solutions

If computations are not independent, you must also be
aware of

sharing data between tasks

synchronizing tasks that might be updating interdependent
chunks

8

9Dividing Arrays

Original
By Element By Row

By Column

By Block

Shared Borders 10

4 shared borders

8 shared
borders

When determining the granularity of tasks that have to
deal with dependencies be cognizant of shared
borders between data chunks; it directly impacts the
work you have to do and memory use

Sharing Information 11

One technique to deal with dependencies is
to copy data from other chunks

have a task access the copied data instead

The issue here is “when do I copy the information”?
If another task is going to be updating the information in a
shared data chunk, you must use synchronization to ensure
the copy is made after the other task is done with its update

2nd technique is to assign dependent chunks to the same
thread; may help to reduce the need for synchronization

consider dividing up a large array into groups of columns

12

Rules: 1. cell alive ➞ only one living neighbor ➞ cell dead
 2. cell alive ➞ >4 living neighbors ➞ cell dead
 3. cell alive ➞ 2-3 living neighbors ➞ cell alive
 4. cell dead ➞ 3 living neighbors ➞ cell alive
All computations performed “at once” for each cycle

Example: Game of Life

How
might we
design a
threaded
update
for this
game?

13Design Factor Scorecard

Key factors when designing concurrent applications

Efficiency

amount of overhead, thread organization

Simplicity

amount of overhead, percentage of serial version present

Portability

across machines, across threading models

Scalability

ability to finish faster with more cores/threads

What’s Not Parallel?

Breshears starts this section with a riff on Fred Brooks

“The bearing of a child takes nine months, no matter how
many women are assigned!”

It a task takes nine months to produce 1/9th of a result

(“a baseball team” in Breshears example)

then nine tasks can create the entire result in 9 months

a single task would take 6.75 years to produce the entire
result!

The point? Not everything can be parallelized!

14

Algorithms with State

Any algorithm that depends on information from a previous
execution of the algorithm

HTTP gains so much of its power by being “stateless”

HTTP Cookies which add state to HTTP weakens the protocol

When confronted with this situation

add locks

forces all concurrent executions of this algorithm to be serial

may be acceptable if algorithm is small part of larger computation

make reentrant (no global variables; only thread-local storage)

15

Recurrences

for (i = 1; i < N; i++) a[i] = a[i-1] + b[i]

If the calculation of a loop depends on a value previously
calculated by the loop…

a[0] would need to be initialized prior to the above loop

… then, you can’t make it concurrent

Hopefully this type of loop will be a small part in a larger
computation that can be made concurrent

otherwise, you are out of luck

Note: this is a special case of “loop-carried dependence”

16

Induction Variables

Variables that are incremented on each trip through a loop

i = 0; for (k=1; k < N; k++) { … i += k; … ; a[i] = … ; }

The only way to get around this is to discover a way to
calculate the exact value of the induction variable based on
the current value of the loop variable

The book gives an example in which the induction variable
just happens to be the sum of the integers from 1 to k
which can be calculated via (k*k + k)/2

it won’t always be this easy, however!

17

Reduction

Reductions take a collection of data and reduce it to a
single scalar value through some combining operation

To parallelize, the operation must be associative and
commutative

if so, you can perform the operation on subsets and then
combine the results of the initial tasks in one additional task

Otherwise, you’re out of luck and must look to see if the
reduction is part of a larger computation that can be made
independent

18

Verification of Parallel
Algorithms

Now that we have discussed design strategies for creating
concurrent applications, how do we verify that they are
correct?

Beyond executing them on test cases

What we are looking for are techniques that can be used at
design time

Breshears starts with a method drawn from a book by M.
Ben-Ari called Principles of Concurrent and Distributed
Programming, Second Edition (Addison-Wesley)

19

Ben-Ari’s technique

1. programs are the execution of atomic statements

atomic statements cannot be interrupted by the OS

2. concurrent programs are interleavings of atomic
statements from two or more threads

operating systems schedule such threads non-
deterministically

3. All statements will be included in an interleaving (fairness)

4. Thus, to prove or verify a desirable property, we must
show that the desirable property holds for all interleavings
of atomic statements from two or more threads

20

Background

Breshears now works through a set of examples known as
the “critical section problem”

The examples eventually reveal an approach known as
Dekker’s Algorithm

But the important point of this section is what you have to
train your brain to do in order to analyze code like this

Think in terms of multiple threads that can arbitrarily
interleave their statements; identify all relevant paths
through the code; ensure all desirable properties are
maintained and all undesirable properties are avoided

21

Critical Section Problem

A critical section is a portion of code from a concurrent
system where shared variables are accessed by a thread
and updated

To avoid “race conditions” mutual exclusion is required; only
a single thread can be in a critical section at once

The challenge here is to develop an algorithm that achieves
this property WITHOUT using synchronization objects
provided by your threading model

22

Critical Section Problem

Two Properties

The code enforces mutual exclusion of the critical region;
plus if there are multiple threads waiting to enter the region
and it becomes available, only one thread is allowed to enter

A thread not in the critical region cannot prevent another
thread from entering the region

Our experimental set-up

Two threads, two critical regions represented by methods and
two methods to represent work done outside the critical
region

23

Attempt One

The lock step approach

Each thread has a “spin loop”

while (cond) {}; // I typically write: while (cond) {Thread.yield();}

otherwise the scheduler will sit in the loop for a LONG time

A global variable keeps track of whose “turn” it is

A loop wanting to enter the critical region waits for its turn

After leaving the critical region, it sets the global variable to
indicate that it’s done and it’s the other threads turn

Let’s look at the code

24

Analysis (I)

The code starts indicating that it is thread zero’s turn

Thread 1 will always block in its spin loop; thread zero will
charge ahead and enter the critical region

When it is done, it sets the turn to thread 1, releasing thread 1

It can then go on with other work, and return to the top of the
loop; it might get back to its spin loop before thread 1 has
done anything (remember the two threads execute
independent of one another: arbitrary interleaving can occur)

It will then block however; mutual exclusion (property 1) has
been achieved

25

Analysis (II)

Now, imagine the following situation

Thread 0 is in critical region, exits, sets var to 1, and enters
OtherStuffZero, a long running task

Thread 1 enters critical region, exits, sets var to 0, does other
stuff, spins around and now wants to enter the critical region

Can it do it?

No! Thread zero has to finish OtherStuffZero, spin around,
enter the critical region and set the var to 1 again!

This algorithm thus violates our second desirable property

26

Attempt Two

Two variables, one for each thread, to indicate when their
respective threads are in the critical regions

If thread zero wants to enter its critical region

it spins while thread one is in its critical region

then it updates its variable

enters its critical region

and updates it again when it is done

the same is true for thread one, except it spins on thread zero

Let’s look at the code

27

Analysis (I)

The problem from attempt one is gone

There is no “turn taking” variable preventing thread one from
entering its critical region while thread zero is doing stuff
outside its critical region

Now, let’s analyze the code to see if it demonstrates mutual
exclusion

28

Analysis (II)

T0 tests T1INSIDE

T1 tests T0INSIDE

T0 finds FALSE

T1 finds FALSE

T0 sets T0INSIDE

T1 sets T1INSIDE

T0 enters critical region

T1 enters critical region

BOOM!

There is nothing in this
code to prevent the threads
from both checking to see if
the other is in the CR at the
SAME time

Let’s run the code

29

Attempt Three

Less selfish threads: “more genteel threads”

Two variables express an “intent to enter the critical region”

Threads first set their variable, then spin while the other
thread has the same intent, then enter the critical region and
then set their intent to zero

Similar to second attempt, but the order in which flags are set
and checked are different

in attempt_two, we check then set

in attempt_three, we set and then check

Potential Problem: no distinction between “intent” and “in”

30

Analysis

Unstable situation
If you run the code, it doesn’t take long for it to lock up

While a cursory walkthrough will show that both properties
can be maintained

mutual exclusion is maintained if the problem is avoided

a thread can enter its CR as many times as it wants if the
other thread is off doing other things

BUT: we have a similar problem as attempt 2
both can set their “intent” at the same time and then spin
forever waiting for the other to “finish” ➞ DEADLOCK

31

Sidebar: DEADLOCK

To have the potential for deadlocks, you need multiple
threads and shared resources and the following conditions

mutual exclusion: resources are not shared at the same time

hold and wait: a thread waits to acquire a resource

no preemption: thread cannot be forced to release a resource

circular wait: A is waiting for B who is waiting for A

If you have these conditions, then deadlock can occur

as we saw in attempt three

here the resources were the “intent” variables

32

Attempt Four

To address deadlock, the spin loops are changed such that

a thread revokes its “intent”

sleeps

declares its “intent”

and then checks the condition of the spin loop again

This breaks the potential for deadlock since now each
thread is voluntarily revoking its locked resource

Lets look at the code

33

Analysis

Both properties are now maintained BUT there is still a
problem

Now there is a potential for a thread to starve
Starvation occurs when a thread is inadvertently blocked
from making progress

It is not being blocked explicitly but some other thread is
“winning” when the scheduler makes a decision concerning
which instruction to run next

In this program, it is possible for one of the threads to
continually enter its CR, preventing the other thread from
accessing its CR for long periods of time

34

Attempt Five
(Dekker’s Algorithm)

To address starvation, we add one final modification

a variable that keeps track of “favored” status

Similar to attempt_1 but now all favored status says is

if both threads want to enter the CR, the favored thread wins

favored status switches back and forth to prevent starvation

Lets look at the code

We will keep attempt_four the way it is, just add the favored
status flag and the code to manage it; now the program will
run forever (if you and the universe let it)

35

What’s the point again?

Not to demonstrate Dekker’s Algorithm!

It only works for two threads anyway; not very useful

The important goal of this exercise was to demonstrate the

types of properties that are desirable for concurrent apps

types of problems to avoid for concurrent apps

race conditions, deadlock, starvation

types of analysis that you must use to achieve these goals

You must be able to simulate the execution of multiple
threads in your head, identifying problematic interleavings

36

Performance Metrics

How do you measure the performance of your concurrent
application?

elapsed time

How do you know if it’s any good?

compare its elapsed time with the elapsed time of the fastest
single-threaded program that does the same thing (using the
same input, of course)

How do you report it?

Speedup: How many times faster is the concurrent app?

37

38

80 1 2 3 4 5 6 7

8

0

1

2

3

4

5

6

7

Number of Cores

Sp
ee

d
up

Per
fec

t S
cal

ab
ilit

y

Good Scalability

Poor Scalability

39Beware Superlinear…

If you see superlinear speedup, be suspicious

for example, you get a 10x speedup with two cores

Check List

Double check the timings of both programs

Make sure you are computing correct results

Is your test set realistic?

Your “chunked” test data set may be small enough to fit into
local cache, giving a false speedup that goes down, one a
realistic data set is provided

Predicting Performance

Amdahl’s Law

Can predict upper bound of speedup for a given project

Inputs

percentage of serial execution time that can be made parallel

e.g., you know 10 functions can be made to run in parallel and
you know they take 60% of the single threaded execution time

number of cores

40

Amdahl’s Law 41

Speedup ≤ 1
(1−pctPar)+ pctPar

p
Notes:

 (p = 1) ➞ equation becomes 1/1 = 1x speedup
 (> p) ➞ smaller impact of second term ➞ larger overall value
 (> pctPar) ➞ smaller bottom fraction ➞ larger overall value

(p = 8, pctPar = 0.99) ➞ 1/(0.01) + .12375 = 1/.13375 = 7.48x

42

 1 2 3 4 5 6 7 8

8

0

1

2

3

4

5

6

7

Number of Cores

Sp
ee

d
up

100% Pa
ral

lel

99%

95%

90%

75%

50%

7.48

5.93

1.78

4.71

2.91

Upper Bound 43

Amdahl’s Law is an upper bound prediction

All it does is predict how close you get to the ideal linear
speedup based on the amount of code you think you can get
to run in parallel

It ignores real-world concerns like

overhead (communication, synchronization, etc.)

and assumes a fixed data set size for any and all numbers
of cores used

Gustafson-Barsis’s Law

A measure that tries to factor in how the size of the data
processed by an application can go up when it has more
cores being thrown at it

p = num. cores, s = serial execution time of parallel app

computes how much faster this app is over its single
threaded version

s = 10/1000 and p = 64, gbl = 63.37

44

Speedup ≤ p + (1− p) s

Efficiency

Finally, efficiency is a metric that tells us how well are we
utilizing the computational resources of our overall system

Efficiency = Speedup / number of cores

If speedup is 50x on 60 cores, then efficiency is 83.4%

over a run of the program, each of the cores is idle 16.6% of
the time

45

Example

Program with 8 threads

1 thread reads files from disk; puts contents into a queue

7 threads retrieve entries from the queue and process them

Potential exists for a 7x speedup vs. single threaded app.

But performance will likely be less because

the thread reading from disk may not be able to fill the queue
fast enough for the seven processing threads

if so, then those threads will sit idle, blocked until data is
present

46

Wrapping Up

Concepts

Data Decomposition

What’s Not Parallel

Verification of Parallel Algorithms

Performance Metrics

47

Coming Up Next

Lecture 10: Eight Simple Rules for Designing Multithreaded
Applications

Chapter 4 of Breshears

Lecture 11: Good Enough Design

Chapter 5 of Pilone & Miles

48

