
© University of Colorado, 2010

Project Planning
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 7 — 02/02/2010

1

Goals

Review material from Chapter 3 of Pilone & Miles

Customer Priorities

Milestones

The dangers of adding more people

Tar Pit and the Mythical Man-Month

Velocity

Big Board

2

Project Planning (I)

Or, what to do if your estimate is too big?

In lecture 5, we looked at gathering requirements, creating
user stories and assigning estimates to those stories

The goal: to create a total estimate for the project

You then deliver this estimate to the customer and see if it
meets their expectations

Note: the techniques described in lecture 5 are not the entire
story, we’ll get more detail about we actually need to do to
create an accurate estimate as we move forward

3

Project Planning (II)

In the Orion’s Orbits example, the answer was clear

Our estimate: 489 days (~1.85 years of development time!!)

Customer’s Ideal Deadline?

90 days

(sigh)

4

Project Planning (III)

What to do?

Scope the Problem

Focus on most critical functionality and see if customer is
willing to focus on that subset

In general, “scope the problems” means drop features until the
remaining features can be completed by the original due date

In this example, it means “drop/delay features until a system that
meets the customer’s most critical needs can be completed by
the customer’s due date”

Who does the scoping? The customer

5

Milestone 1.0

In particular, we are attempting to define what features will
go into “milestone 1.0”

Milestone 1.0 == first major release to the customer

In iterations, you show software for feedback but do not
generally deploy the software for production use

With milestones, you are delivering software that will go into
production use

6

Milestone 1.0 Do’s and
Don’ts

Do balance functionality with customer impatience

Help customer understand what can be done before the
deadline

Help them understand that features are being delayed not
dropped

Don’t get caught planning nice-to-haves

You need to focus on what’s needed: mission critical fun.

Don’t worry about length (yet)

You’re trying to understand your customer’s priorities

7

Sanity Check

Once you have identified the features that need to go into
Milestone 1.0, recheck your estimate

In the book, since you have less features, the new estimate
comes to 273 days (3/4 of a year)

You still have 90 days to complete the work

And we are assuming a team size of 1 person

In this situation, we would be forced to reprioritize with the
customer and cut functionality to the bone

OR…

8

Add More People

… we could add more people!

Lets increase the team size to 3 people

273 / 3 = 91 days of work and we have 90 days left

That should do the trick assuming a few sleepless nights as the
deadline approaches, right?

WRONG!

First, we have 90 calendar days, not 90 work days!

Recall that we get roughly 20 works days per month

So a team of 3 can accomplish roughly 180 days worth of work
over 90 calendar days ASSUMING ALL GOES WELL

9

Wrong, continued

Second, you can’t assume that the customer won’t change
things on you as you move forward

even with all this angst about cutting back from the “blue
sky” version of the project to arrive at milestone 1.0

Third, you can’t assume that the two new developers will be
up to speed on the project and ready to put full productive
work days into the project on day one

With three people, we now have

two people to train and get ready to work on the project

three communication paths to manage (previously zero)

10

11

Indeed

It’s time for a

Brooks Intervention

(Fred Brooks, that is.)

12Mythical Man-Month (I)

Famous essay (and the title of Brooks SE book)

It looks at the unit of the man-month

sometimes used by management to schedule large projects

I will henceforth refer to the man-month as the person-
month (which is what it should have been called originally)

13But First: The Tar Pit

Developing large systems is “sticky”

Projects emerge from the tar pit with running systems

But most missed goals, schedules, and budgets

“No one thing seems to cause the difficulty--any particular paw
can be pulled away. But the accumulation of simultaneous and
interacting factors brings slower and slower motion.”

14The Tar Pit, continued

The analogy is meant to convey that

It is hard to discern the nature of the problem(s) facing
software development

Brooks begins by examining the basis of software
development

e.g. system programming

15Evolution of a Program

Program

Programming
Product

Programming
System

Programming
Systems
Product

x3

x3

x9

16

What makes programming
fun?

Sheer joy of creation

Pleasure of creating something useful to other people

Creating (and solving) puzzles

Life-Long Learning

Working in a tractable medium

e.g. Software is malleable

17

What’s not so fun about
programming?

You have to be perfect!

You are rarely in complete control of the project

Design is fun; debugging is just work

Testing takes too long!

The program may be obsolete when finished!

18Why are software project’s late?

Estimating techniques are poorly developed

Our techniques confuse effort with progress
The Mythical Man-Month

Since we are uncertain of our estimates, we don’t stick
to them!

Progress is poorly monitored!

When slippage is recognized, we add people

“Like adding gasoline to a fire!”

19Optimism

“All programmers are optimists!”
“All will go well” with the project

Thus we don’t plan for slippage!

However, with the sequential nature of our tasks, the
chance is small that all will go well!

One reason for optimism is the nature of creativity
idea, implementation, and interaction

The medium of creation constrains our ideas
In software, the medium is infinitely tractable, we thus expect few
problems in implementation, leading to our optimism

20Mythical Man-Month (II)

The unit of the person-month implies that workers and
months are interchangeable.

However, this is only true when a task can be partitioned
among many workers with no communication among them!

Brooks points out that cost does indeed vary as the
product of the number of workers and the number of
months. Progress does not!

When a task is sequential, more effort has no effect on the schedule

“The bearing of a child takes nine months, no matter how many
women are assigned!”

21Mythical Man-Month (III)

And, unfortunately, many tasks in software engineering have
sequential constraints

Especially debugging and system testing

(Note: open source development challenges this notion a bit)

22Mythical Man-Month (IV)

In addition, most tasks require communication among
workers

In a software dev. project, communication consists of

training, and

sharing information (intercommunication)

23Mythical Man-Month (V)

training will effect effort at worst linearly

(i.e. if you have to train N people individually, it will take
N*trainingTime minutes to train them)

intercommunication adds n(n-1)/2 to the effort

if each worker has to communicate with every other worker

24Mythical Man-Month (VI)

1

5

9

13

17

21

2 3 4 5 6 7

1

3

6

10

15

21

Number of Workers

Communication

Paths

25Mythical Man-Month (VII)

Another way to
look at it

26

20 40 60 80 100

1000

2000

3000

4000

5000

A 100 person team has 4950 potential
communication paths to manage!

27Some benefit, then none

Back to the Example 28

With 3 developers, we start by assuming that they can
produce 180 days of development effort

(The book used 190 days, but I couldn’t figure that out.)

You then negotiate with the customer until the estimate of
all the features in milestone 1.0 is less than 180 days

You then create an iteration plan and get to work

Keep your iterations short (30 calendar days, 20 work days)

It helps you deal with change and keep you focused

Keep your iterations balanced (new features, fixing bugs, etc.)

And, now reality sets in

We can’t necessarily assume 180 days of work from three
developers over three calendar months

During the day there are constant interruptions that prevent
developers from remaining “in the flow”

rather than 8 productive hours in a work day, you find that you
only achieve 5 hours (or less)

To account for this, agile methods make use of a concept
called “team velocity” or “velocity”

Velocity is a percentage: given X number of days, how much
of that time is productive? A default value is 0.7

29

Realistic Estimate 30

project estimate
(in days)

velocity
== realistic project

estimate

30 calendar days, 20 work days == 14 days of productive time

Yikes!!!!

Example, cont. 31

Now, that we know about velocity, we can use it to estimate
how many days of productive work we can achieve during
each iteration

Since we have three iterations:

3 x 20 x 0.7 == 42
number of developers x

working days in iteration x
velocity

3 x 42 == 126

Example, cont.

Went from: 3 people could do 270 days of work in 90 days

To: 3 people could do 180 days of work in 90 days

To (finally): 3 people could do 126 days of work in 90 days

Assuming an overhead of 0.7

Question: what should we do with our velocity if we add
MORE people to the project?

How would you change velocity if we shifted to 4 people?

or to 10 people?

32

Managing Customers

The customer will probably definitely not like the change
from 273 days of work possible to 123

Since it means a big reduction in what can be accomplished

What to do?

Add an iteration (if they will let you)

Explain that overflow work is not lost, just postponed

Be transparent about how you came up with your figures

You now have an estimate that you can be confident in

33

The Big Board

Once you have a realistic estimate and an iteration plan
based on that estimate, you are ready to get started

You will track your progress with a software development
dashboard

A large whiteboard that is partitioned to help your team focus
on what is happening during the current iteration

34

35

Title: Book package

Description: An Orion's

Orbits user will be able to

book a special package with

extras online.

Title: Pay online

Description: An Orion's

Orbits user will be able to pay

for their bookings online.

Title: Show Current Deals

Description: The website

will show current deals to

Orion's Orbits users.

User Stories Burn Down

Next

Completed

We’ll see how to use this board
during an iteration in lecture 9

36

Burn Down

Days Left

Work

Left

0

44

20 0

Ideal

Burn Down

Rate

We’ll see how to use the burn down
chart in lecture 9 as well

37Wrapping Up

Discussed

Factors that weigh into making an initial project estimate

Number of team members

Team Velocity

Mythical Man-Month

Introduced

The Big Board

Burn Down Chart

Coming Up

Lecture 8: Proving Correctness and Measuring Performance

Chapter 3 of Breshears

Lecture 9: User Stories and Tasks

Chapter 4 of Pilone & Miles

38

