
© University of Colorado, 2009

Dealing with Bugs
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 27 — 04/21/2009

1

Goals

Review material from Chapter 11 of Pilone & Miles

Dealing with Bugs

Talking with your Customer

Scouting out the bug

What exactly is not working?

Making an estimate

Spike Testing

Fix the Bugs

2

The Lay of the Land

In the Chapter example, the situation for our team did NOT
look good

Working to demo integration of Mercury Meal’s code

Demo is not working, the system hang’s when calling MM code

The MM code is a mess!

The team has three user stories that depends on this new code

To make matters worse, the CEO and CFO of Orion’s Orbits
are expecting to see the demo ASAP

3

Fall Back to Process

Our process relies on communication, so the first thing we
do is talk to the CEO

He agrees to push back the demo but wants to know how
far?

He wants an estimate on how long it will take to fix Mercury
Meal’s code

We need to be confident in the estimate we give him

but we are in a situation where planning poker will not work

Why not?

4

Next Steps?

There are plenty of things we could be doing

Get a coverage report on the MM code… how much of this
code has been tested?

Get a line count on the MM code and use this to make an
estimate.

Do a security audit on the MM code

Use a UML tool to reverse-engineer the code and produce a
class diagram

etc.

5

No

We’re not yet in a situation to do these things; indeed they
provide little benefit right now

We need an estimate of how long we think it will take to track
down all the bugs in the MM code that affect our user stories

Coverage report? We don’t have tests for this system!

Security Audit? Won’t help us with an estimate…

UML tool? Could be helpful but it could provide a lot of
unnecessary detail and get us off track

Line count? We don’t yet know how much of this code we need
and whether its missing code that we do need

6

So, what should we do?

Fall back on our process and get this code ready to give us
the information we need

Create an issue for the MM code in your bug tracker

Organize the source code into standard directories

Write a build script

Place the code and build script under version control

Integrate the code into your continuous build system

Write tests simulating how you need to use the software

File bugs as you find them!

7

Next? Fix code?

We could immediately start working on the code

Here’s an example of what MM gave us

8

9
package com.mercurymeals;

//Follows the Singleton design pattern

public class MercuryMeals

{

! public MercuryMeals meallythang;

! private Order cO;

! private String qk = "select * from order-table where keywords like %1;";

! private static MercuryMeals instance;

!

! public MercuryMeals() {

! }

! public static MercuryMeals getInstance()

! {

! instance = new MercuryMeals();

! return instance;

! }

! // TODO Really should document this at some point... TBD

! public Order createOrder() {

! return new Order();}

! public MealOption getMealOption(String option)

! throws MercuryMealsConnectionException {

! if (MM.establish().isAnyOptionsForKey(option))

! { return MM.establish().getMealOption(option)[0]; };

! return null;

! }

! public boolean submitOrder(Order cO)

! {

! try {

! MM mm = MM.establish();

! mm.su(this.cO); }

! catch (Exception e)

! { // write out an error message

! ! } return false; }

!

! public Order[] getOrdersThatMatchKeyword(String qk)

! throws MercuryMealsConnectionException {

! Order[] o;

! try {

! o = MM.establish().find(qk, qk);

! } catch (Exception e) {

! return null;

! }

! return o;

! }}

Yikes! What a Mess!

10Lizard Brain Response?

Let’s clean this up!

As shown in next slide

11
package com.mercurymeals;

public class MercuryMeals {

 private static MercuryMeals instance;

 public MercuryMeals meallythang;

 private Order cO;

 private String qk = "select * from order-table where keywords like %1;";

 public static MercuryMeals getInstance() {

 instance = new MercuryMeals();

 return instance;

 }

 public Order createOrder() {

 return new Order();

 }

 public MealOption getMealOption(String option) throws MercuryMealsConnectionException {

 if (MM.establish().isAnyOptionsForKey(option)) {

 return MM.establish().getMealOption(option)[0];

 }

 return null;

 }

 public boolean submitOrder(Order cO) {

 try {

 MM mm = MM.establish();

 mm.su(this.cO);

 } catch (Exception e) {

 // write out an error message

 }

 return false;

 }

 public Order[] getOrdersThatMatchKeyword(String qk) throws MercuryMealsConnectionException {

 Order[] o;

 try {

 o = MM.establish().find(qk, qk);

 } catch (Exception e) {

 return null;

 }

 return o;

 }

}

Zapped Tabs

Cleaned up instance
variables

Removed constructor

Reformatted code to a
consistent style

Note: did NOT fix
obvious problems
At this point, we’re
cleaning up the code
so problems CAN’T
hide!

12Much Better

This code still sucks BUT

certain problems are now obvious

horrible comments (so bad I just deleted them)

horrible variable names and lots of potential shadowing

Use of a package in same name space that appears as if by
“magic” in the code (“MM”)

Confusingly they define a variable named “mm” that acts as a
pointer to this package in one method but use the package name
everywhere else

BUT DON’T FIX
ANYTHING YET!

Fixing all the problems you see would represent a waste of
time at this moment

Remember, our focus right now is on getting an estimate

We don’t want to fix code, we want to fix functionality

We have three user stories that are not working because of
the MM code

Fixing these user stories is our ultimate goal

Remember: Simplicity in all things; we’ll fix what we need to make
progress on our current tasks; the future will take care of itself

13

Emphasis

Everything revolves around end-user functionality

We write and fix code to satisfy user stories

We only fix what is broken

We know what’s broken because we have tests that fail

Tests are the ultimate safety net

They let us know when something is broken and when its
fixed again

If there is no test for a user story, that user story is broken

Functional code trumps beautiful code!

14

Next Step: Write a Test

Now we write tests related to our three user stories to see
what’s broken

See next slide

15

16
package com.orionsorbits.solutions;

import com.mercurymeals.*;

import com.orionsorbits.OrderNotAcceptedException;

public class OrionsOrbitsSolution {

! public static void main(String[] args) throws Exception

! {

! ! OrionsOrbitsSolution oo = new OrionsOrbitsSolution();

! ! System.out.println("Adding order...");

! ! oo.orderMeal(new String[]{"Fish and Chips"}, "VS01");

! }

!

! public void orderMeal(String[] options, String flightNo) throws Exception {

! !

! ! MercuryMeals mercuryMeals = MercuryMeals.getInstance();

! ! Order order = mercuryMeals.createOrder();

! !

! ! for (int x = 0; x < options.length; x++) {

! ! ! MealOption mealOption = mercuryMeals.getMealOption(options[x]);

! ! !

! ! ! if (mealOption != null) {

! ! ! ! order.addMealOption(mealOption);

! ! ! } else {

! ! ! ! throw new MealOptionNotFoundException(mealOption);

! ! ! }

! ! }

! !

! ! order.addKeyword(flightNo);

! !

! ! if (!mercuryMeals.submitOrder(order)) {

! ! ! throw new OrderNotAcceptedException(order);

! ! }

! }

}

We want this code to work to be
able to say that the three user
stories are fixed.

Its written as a test case in the
book.

17What Next? Spike Test

Now that you’ve written tests and know what’s failing, it’s
time to conduct a spike test to create the estimate that we
need to provide to the CEO

A spike test is a week outside the normal iteration plan in
which the focus is on fixing the failing test cases
Pick a random sampling of the test cases

But try to avoid the easiest and the hardest test cases
After five days, calculate your bug fix rate

Bugs Fixed / Number of Days = Daily bug fix rate
Now calculate your estimate

Bug Fix Rate x (Failing Test Cases) = Estimate

Example

In the example, the team had 13 failing test cases

During a 5 day spike test they fixed 4 of the bugs

Bug fix rate: 4 / 5 = 0.8 bugs per day

They now have 9 failing test cases

Estimate: 0.8 bugs per day x 9 bugs = 7 days

18

Accuracy?

Now, temper the estimate with some qualitative data

You have an estimate but your team might feel that its not
quite right

One of the developers might feel like they “grok” the MM code
now and so feels like the remaining bugs will fall much more
quickly

Take a survey of the developer’s confidence and factor that
into your final estimate

(bug fix rate x bugs remaining) x 1/average confidence

19

Example

Three developers are surveyed about their confidence that
the remaining bugs will take 7 days to fix

One developer says they are 80% confident

The other two say they are 60% and 70% confident

Take the average for the team’s confidence: 70%

Revise estimate

(0.8 x 9) x 1/.7 = 10.28 days

20

Take this to Customer

Give the new estimate to the customer

And work with them to update the iteration plan

Some stories may need to be bumped to the next iteration

Then… GET TO WORK!

At the end of the process, you will have fixed all the bugs
needed to fix the three user stories and allow the demo to
proceed

The problem: there will still be bugs hiding in the MM code

Deal with them if and when they affect future user stories

21

Wrapping Up

Addressing bugs requires a process

When fixing bugs in code that you didn’t write yourself

get the code under control before fixing it

build scripts, version control, reorganization, but NO FIXING

write tests

perform a spike test

provide estimate to customer and update plan

get to work and keep track of all issues in bug tracker

Don’t fix bugs just to fix them; let user stories guide you

22

Coming Up

Lecture 28: Software Abstractions

Overview of the Software Abstractions textbook

Lecture 29: SE Wrap-Up

Chapter 12 of Head First Software Development

Review of Class

Lecture 30: Project Demos

23

