
© University of Colorado, 2009

Alternative 
Approaches to 
Concurrency
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 26 — 04/16/2009

1



Goals

Review alternative approaches to concurrency

MapReduce

Agent Model of Concurrency

Examples from Erlang and Scala

2



Problems with 
Concurrency

As mentioned at the beginning of this semester

Designing and Implementing Concurrent Systems is hard

Data structures shared between threads need to be protected

requiring locks (monitors and condition sync) to avoid 
interference

Deadlock and Race conditions are always a concern

and sometimes not easy to reproduce

We’ve used model-based techniques to attempt to address 
these concerns ; but this simply shifts the problems to the 
design phase

3



Alternative Approaches

As a result of these concerns, computer scientists have 
searched for other ways to exploit concurrency

in particular using techniques from functional programming
Functional programming is an approach to programming 
language design in which functions are

first class values (with the same status as int or string)
you can pass functions as arguments, return them from 
functions and store them in variables

and have no side effects
they take input and produce output
this typically means that they operate on immutable values

4



Example (I)

In python, strings are immutable
a = “Ken @@@”

b = a.replace(“@”, “!”)

b
'Ken !!!'

a
'Ken @@@'

Replace is a function that takes an immutable value and 
produces a new immutable value with the desired 
transformation ; it has no side effects

5



Example (II)

Functions as values (in python)

def Foo(x, y):

return x + y

add = Foo

add(2, 2)

4

Here, we defined a function, stored it in a variable, and then 
used the “call syntax” with that variable to invoke the 
function that it pointed at

6



Example (III)

continuing from previous example
def DoIt(fun, x, y): return fun(x,y)
DoIt(add, 2, 2)

4
Here, we defined a function that accepts three values, some 
other function and two arguments

We then invoked that function by passing our add function 
along with two arguments ;
DoIt() is an example of higher-order functions: functions that 
take functions as parameters
Higher-order functions is a common idiom in func. prog.

7



Relationship to 
Concurrency?

How does this relate to concurrency?

It offers a new model for designing concurrent systems

Each thread operates on immutable data structures using 
functions with no side effects

A thread’s data structures are not shared with other threads

Work is performed by passing messages between threads

If one thread requires data from another that data is copied and 
then sent

Such an approach allows each thread to act like a single-
threaded program; no danger of interference

8



Map, Filter, Reduce

Three common higher order functions are map, filter, reduce

map(fun, list) -> list

Applies fun() to each element of list; returns results in new list

filter(fun, list) -> list

Applies boolean fun() to each element of list; returns new list 
containing those members of list for which fun() returns True

reduce(fun, list) -> value

Returns a value by applying fun() to successive members of 
list (total = fun(list[0], list[1]); total = fun(total, list[2]); …)

9



Examples

list = [10, 20, 30, 40, 50]

def double(x): return 2 * x

def limit(x): return x > 30

def add(x,y): return x + y

map(double, list) returns [20, 40, 60, 80, 100]

filter(limit, list) returns [40, 50]

reduce(add, list) returns 150

10



Implications

map is very powerful

especially when you consider that you can pass a list of 
functions to it and then pass a higher-order function as the 
function to be applied

for example

def DoIt(x): return x()

map(DoIt, [f(), g(), h(), i(), j(), k()])

But the real power, with respect to concurrency is that map 
is simply an abstraction that can, in turn, be implemented in 
a number of ways

11



Single Threaded Map

We could for instance implement map() like this:

def map(fun, list):

results = []

for item in list:

results.append(fun(item))

This would implement map in a single threaded fashion

12



Multi-threaded Map

We could also implement map like this (pseudocode):
def Mapper(Thread):

def __init__(… fun, list): …
def run():

self.results = map(fun, list)

def xmap(fun, list):
split list into N parts where N = number of cores
create N instances of Mapper(fn, list_i)
wait for each thread to end (in order) and grab results
append thread results to xmap results
return xmap results

13

Note: threads can complete 
in any order since each 
computation is independent



Super Powerful Map

We could also implement map like this:

def supermap(fun, list):

divide list into N parts where N equals # of machines

send list_i to machine i which then invokes xmap

wait for results from each machine

combine into single list and return

Given this implementation, you can apply a very 
complicated function to a very large list and have 
(potentially) thousands of machines leap into action to 
compute the answer

14



Google

Indeed, this is what Google does when you submit a search 
query:

def aboveThreshold(x): return x > 0.5 <-- just making this up

def probabilityDocumentRelatedToSearchTerm(doc): …

searchResults =

filter(aboveThreshold,

map(probabilityDocumentRelatedToSearchTerm,

[<entire contents of the Internet]))

15



Difference between map 
and xmap?

The team behind Erlang published results concerning the 
difference between map and xmap

They make a distinction between
CPU-bound computations with little message passing vs.
lightweight computations with lots of message passing

With the former, xmap provides linear speed-up (10 CPUs 
provides a 10x speed-up, then declining) over map

the latter less so (10 CPUs provided 4x speed-up)
Indeed, xmap’s performance in the latter case tends to max 
out at 4x no matter how many CPUs were added

16



Linear speed-up: Hard to 
achieve!

On my machine a program to double each member of a 
large list actually runs faster in single threaded mode!!

When using map, you are building just one results list and do 
not incur any overhead with respect to threading

When using xmap, three lists are being created (one per 
thread, one to collect the results) and

you incur overhead to

create each thread

wait for each one to start running

wait for each one to join the main thread

17

Demo



Agent Model

The functional language Erlang is credited with creating an 
approach to concurrency known as the agent model

A concurrent program consists of a set of agents

Each agent has its own set of data structures that are not 
shared with other agents

Agents can perform computations and send messages

Messages sit in an actor’s mailbox until it is ready to process 
them; they are always processed one at a time

An actor does not block when sending a message

An actor is not interrupted when a message arrives

18



Examples

Examples will be presented in Scala

Scala is a language which nicely combines both the 
imperative and functional programming styles

It is implemented on top of Java and thus is cross platform

I won’t spend much time explaining Scala; I’ll just focus on the 
agent model

19



Example 1

import scala.actors._
object SillyActor extends 
Actor {

def act() {
for (i <- 1 to 5) {

println(“I’m acting!”)
Thread.sleep(1000)
}

}
}

}

object SeriousActor 
extends Actor {

def act() {
for (i <- 1 to 5) {

println(“To be or not to 
be”)
Thread.sleep(1000)

}
}

}

20



Running Example 1

SillyActor.start() ; SeriousActor.start()

Demo

From this example we can see that Actor is a class that can 
be sub-classed (just like Thread in Java)

You start an actor by calling start()

At some point, the scheduler calls the actor’s act() method

The actor will be active until that method returns

This is just like Thread’s run() method, only the name has 
changed

21



Processing Messages

To process a message, an actor must call either receive or 
react

react is a special case of receive that we’ll discuss below

You can think of receive as a “switch” statement that 
specifies the structure of the different type of messages it 
wants to receive

When an actor calls receive, it looks at the mailbox and 
attempts to find a waiting message that matches one of the 
branches of the “switch” statement

it processes the first match that it finds

22



Example

val echoActor = actor {
while (true) {

receive {
case msg =>

println(“received message: “ + msg)

}

}

}
This actor loops forever and prints out any message it 
receives

23

A message is sent with the ! operator:

echoActor ! “hi there”
echoActor ! 25

Demo



Conserve Threads

When an act() method calls receive(), it tells the scala run-
time system that this actor needs its own thread

The actor may be spending its time switching between 
processing messages and performing a long computation

Since threads in Java are not cheap, scala provides the 
react keyword to tell the runtime that all this thread does is 
react to messages

This means it spends most of its time blocked

Scala uses this information to assign “react actors” to a single 
thread, thus conserving threads in the overall system

24



Example

object NameResolver extends Actor {
…
def act() {

react {
case (name: String, actor: Actor) =>

actor ! getIp(name)

act()

case “EXIT” =>
println(“quitting”)

}
…

25

Note: no explicit 
loop; that’s because 
react doesn’t return 
(enables sharing of 
multiple actors on a 
single thread)

instead, react must 
call act() if it wants to 
keep waiting for 
messages



Results

To test Scala’s claim that react helps conserve threads

I wrote a program that can create a specified number of 
NameResolvers that either

use receive or

use react

Results: when creating 100 NameResolvers

using receive: 104 threads created

using react: 7 threads created (!)

26



Past Examples

With the Agent model of concurrency, you can easily avoid 
interference problems

Here’s an example of the ornamental garden problem

No need for mutual exclusion: create two agents that act as 
turnstiles and have them send increment messages to a shared 
counter agent

However, it can sometimes be tricky to design interactions

Here’s an example of the museum problem written in this 
model

27



Spawning Actors (I)

The museum example demonstrates a common design 
idiom in the Agent model of concurrency

An agent can only respond to messages when its not doing 
anything else

makes sense: that’s just like a single threaded program

Think Web browsers and loading images;

if they didn’t use multiple threads, web pages would load very 
slowly indeed!

So, if an agent needs to perform a long computation, it 
needs to spawn another agent to do that for them

28



Spawning Agents (II)

def reminder() {
val mainActor = this
Actor.actor {

Thread.sleep(1000+generator.nextInt(1000))
mainActor ! "reminder"

}
}
…

receive {
case "reminder" =>

counter ! "increment"
reminder()

29



Final Example

Message syntax can be as complex as you need it

Here’s an example of a network node status monitor

Taken from this tutorial

It queries a domain to see if its “alive”

But first

Since this example uses Scala “case classes” to create more 
complex messages with domain-specific syntax

Lets do a quick tutorial on case classes

30

http://blog.objectmentor.com/articles/2008/08/14/the-seductions-of-scala-part-iii-concurrent-programming
http://blog.objectmentor.com/articles/2008/08/14/the-seductions-of-scala-part-iii-concurrent-programming


Case Classes

abstract class Expr

case class Var(name : String) extends Expr

case class Number(num: Double) extends Expr

case class UnOp(operator: String, arg: Expr) extends Expr

case class BinOp(operator: String, left: Expr, right: Expr) 
extends Expr

To create an expression you can now say

var op = BinOp(“+”, Number(0), Var(x)) // equals 0 + x

31



Match Expressions

Case classes shine when used in match statements

def simplify(expr : Expr) : Expr = expr match {

case UnOp(“-”, UnOp(“-”, e)) => e

case BinOp(“+”, Number(0), e) => e

case BinOp(“*”, Number(1), e) => e

case _ => expr

}

simplify(BinOp(“+”, Number(0), Var(x))) returns Var(x)

because “0 + x” == “x”

32



Case classes in Example

case class NodeStatusRequest(address: InetAddress, a: Actor)

sealed abstract class NodeStatus

case class Available(address: InetAddress) extends NodeStatus

case class Unresponsive(

address: InetAddress,

reason: Option[String]) extends NodeStatus

Option[String] is a special type that can either have the value 
Some(String) or None

33



Demo

This demo sets up an actor to check the availability of 
various domains

It then passes a few messages to this actor and then waits 
for the actor to respond

It can also handle the case when it gets an unexpected 
message

34



Wrapping Up

We have looked at a few alternative models to the “locks 
and shared data” model of concurrency that

draw on functional programming techniques

do not allow threads to share data

allow threads to communicate via asynchronous messages

Deadlock and Race conditions are still possible in this 
model but harder to achieve

However, interference is simply not possible in this model

Functional techniques seem like a promising method for 
tackling concurrency on multi-core hardware

35



Coming Up

Lecture 27: Dealing with Bugs

Chapter 11 of Head First Software Development

Lecture 28: Software Abstractions

Overview of Software Abstractions Optional Textbook

36


