
© University of Colorado, 2009

The Next Iteration
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 25 — 04/14/2009

1



Goals

Review material from Chapter 10 of Pilone & Miles

The Next Iteration

Planning

Recalculating Velocity

Talking with your Customer

Dealing with Change

Using Third Party Code

2



The Next Iteration

You have work to do to get ready for the next iteration

Indeed, given the material covered in Lecture 24 and the 
issues we’ll discuss today

a prudent team will allocate at least a day, if not two,

to all the tasks that need to be performed at the end of an 
iteration

After your iteration review is complete,

your biggest job is planning for the next iteration

3



Planning

Elements of Planning

How much work is left over from the previous iteration?

Is the customer satisfied with the work accomplished?

What bugs have been found by the testing team?

What new stories were (previously) planned for this iteration?

Does the customer have anything new for you?

4



First Step: Estimates

Your first task is to revisit all prior estimates of all user 
stories (both existing and new)

With at least one iteration under your belt, you are

better prepared to decompose stories into tasks

better prepared to play planning poker and assign estimates

You may have spent a lot of time in your first iteration 
performing set-up and configuration tasks

various aspects of the system will now be in place and that 
will allow you to reduce some of your prior estimates

5



Second Step: Velocity

You now need to recalculate your velocity

If

estimated work = developers x working days x old velocity

then

new velocity = actual work / (developers x working days)

6



Example

Back in chapter 3, we calculated

3 devs x 20 days per iteration x 0.7 velocity = 42 days

That was 42 days of potential work per iteration

In actuality, our team managed to complete 38 days worth 
of work during the first iteration

38 days actual work / (3 devs x 20 days) = 0.6333

New velocity: 0.6 (You can use .6333 if you want)

Remember: 0.7 was just a guess

New estimate for next iteration: 3 x 20 x 0.6 = 36 days

7



Step 3: Big Board

Now you need to prepare the big board for the next iteration

The book recommends taking a picture of the old board 
before taking it down (you can then archive the picture)

All stories and tasks should have new estimates

All stories should have priorities that have been reviewed by 
the customer and updated if needed

Allocate stories for the next iteration taking into account the 
new value for estimated work

Finally, present new plan for iteration to customer

8



Step 4: Disaster?

In most cases, the customer will approve the plan and you’ll 
be ready to go when Monday comes around

Every now and then, the customer will do what customers 
do best:

Change Everything!

Disaster?

NO!

Listen to the change requests, create stories and tasks, 
assign estimates, get priorities, create new plan, then go!

9



Example

In the book, the customer springs a request that
requires the team to pick up a library developed by another 
company
integrate that software into our system
demo the integrated functionality at the end of the next 
iteration

The team has to drop everything and re-plan
One smart thing they do is to give a large estimate to the task 
of integrating the new software

Smart because: you have to build it, learn it, code to it & test it!

10



Example, continued

The team learns the library API, writes code against it, and

their system hangs

As a result, they now have to debug third party code

(fortunately they have the source code)

If they didn’t, they would have to either

submit a bug report and hope for a fix

drop the library and create its functionality from scratch

Ultimately, you are responsible for all the code you deliver 
with your system; trust no one and test extensively

11



Example, continued

There are risks but reuse is almost always a GOOD thing

Consider, the libraries that come with modern PLs

Recently I wrote an app that searches twitter for “tweets” 
that match particular criteria; it took me less than two days

Reused the following:

Twitter’s Search API

io, json, os, sys, time and urllib modules from python

list and map data structures, list comprehensions, and 
functional programming techniques from python

12



Wrapping Up

Before moving on to the next iteration

create new estimates for all tasks and stories

get new priorities from customer

calculate velocity based on performance

allocate stories based on updated velocity

get customer approval

Welcome change; your process supports it!

13



Coming Up

Lecture 26: Alternate approaches to Concurrency

No reading assignment

MapReduce

Agent model of Concurrency

Examples from Erlang and Scala

Lecture 27: Bugs

Chapter 11 of Head First Software Development

14


