
© University of Colorado, 2009

Test-Driven
Development
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 21 — 03/31/2009

1

2

Credit where Credit is
Due

Some of the material for this lecture is taken from “Test-
Driven Development” by Kent Beck

as such some of this material is copyright © Addison Wesley,
2003

In addition, some material for this lecture is taken from
“Agile Software Development: Principles, Patterns, and
Practices” by Robert C. Martin

as such some materials is copyright © Pearson Education,
Inc., 2003

Side Note

Pointer to Recent Podcast on the topic of Test Driven
Development

<http://faceoffshow.com/2009/03/31/episode-10-test-driven-
development/>

3

http://faceoffshow.com/2009/03/31/episode-10-test-driven-development/
http://faceoffshow.com/2009/03/31/episode-10-test-driven-development/
http://faceoffshow.com/2009/03/31/episode-10-test-driven-development/
http://faceoffshow.com/2009/03/31/episode-10-test-driven-development/

Goals

Review material from Chapter 8 of Pilone & Miles

Test-Driven Development

Terminology

Concepts

Techniques

Tools

4

Test-Driven Development

An agile practice that asserts that testing is a fundamental
part of software development

Rather than thinking of testing as something that occurs after
implementation, we want to think of it as something that
occurs BEFORE and DURING implementation

Indeed, done properly, testing can DRIVE implementation

The result, increased confidence when performing other
tasks such as fixing bugs, refactoring, or reimplementing
parts of your software system

5

6

Testimonial
On Monday, September 8, 2003, at 03:44 PM, a former student wrote:

> Dr. Anderson -
>
> I hope you don't mind hearing from former students :) Remember me
> from Object Oriented Analysis and Design last spring? I'm now happily
> graduated and working in the so-called 'Real World' (yikes).
>
> I just wanted to give you another testimony on the real-life use of
> test driven development. My co-workers are stunned that I am actually
> using something at work that I learned at school (well, not really,
> but they like to tease). For a new software parsing tool I'm
> developing, I decided to use TDD to develop it and it is making my
> life so easy right now to test new changes.
>
> Anyways, I just thought of you and your class when I decided to use
> this and I wanted to let you know.
>
> I hope that you are doing well. Best of luck on this new semester.

7Test First

The definition of test-driven development:

All production code is written to make failing test cases pass

Terminology

Production code is code that is deployed to end users and
used in their “production environments” that is there day to
day work

Implications

When developing software, we write a test case first, watch it
fail, then write the simplest code to make it pass; repeat

Example (I)

Consider writing a program to score the game of bowling
public class TestGame extends TestCase {

public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals(5, g.getScore());

}
}

When you compile this program, the test “fails” because the Game
class does not yet exist. But:

You have defined two methods on the class that you want to use

You are designing this class from a client’s perspective

8

Example (II)

You would now write the Game class

public class Game {
public void addThrow(int pins) {
}
public int getScore() {

return 0;
}

}
The code now compiles but the test will still fail:

getScore() returns 0 not 5

In Test-Driven Design, Beck recommends taking small, simple steps
So, we get the test case to compile before we get it to pass

9

Example (III)

Once we confirm that the test still fails, we would then write the
simplest code to make the test case pass; that would be

public class Game {
public void addThrow(int pins) {
}
public int getScore() {

return 5;
}

}

The test case now passes! ☺

10

Example (IV)

But, this code is not very useful! Lets add a new test case
public class TestGame extends TestCase {

public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals(5, g.getScore());

}
public void testTwoThrows() {

Game g = new Game();
g.addThrow(5); g.addThrow(4);
assertEquals(9, g.getScore());

}
}

The first test passes, but the second case fails (since 9 ≠ 5)
This code is written using JUnit; it uses reflection to invoke tests
automatically

11

Example (V)

We have duplication of information between the first test
and the Game class

In particular, the number 5 appears in both places

This duplication occurred because we were writing the
simplest code to make the test pass

Now, in the presence of the second test case, this duplication
does more harm than good

So, we must now refactor the code to remove this duplication

12

Example (VI)

public class Game {
private int score = 0;
public void addThrow(int pins) {

score += pins;
}
public int getScore() {

return score;
}

}

13

Both tests now pass. Progress!

Example (VII)

But now we to make additional progress, we add another test case
to the TestGame class
…

public void testSimpleSpare() {
Game g = new Game()
g.addThrow(3); g.addThrow(7); g.addThrow(3);
assertEquals(13, g.scoreForFrame(1));
assertEquals(16, g.getScore());

}
…

We’re back to the code not compiling due to scoreForFrame()

We’ll need to add a method body for this method and give it the simplest
implementation that will make all three of our tests cases pass

14

15TDD Life Cycle

The life cycle of test-driven development is

Quickly add a test

Run all tests and see the new one fail

Make a simple change

Run all tests and see them all pass

Refactor to remove duplication

This cycle is followed until you have met your goal;

16TDD Life Cycle, continued

Kent Beck likes to perform
TDD using a testing
framework, such as JUnit.

Within such frameworks
failing tests are indicated with a
“red bar”

passing tests are shown with a
“green bar”

As such, the TDD life cycle is
sometimes described as

“red bar/green bar/refactor”

JUnit: Red Bar...

When a test fails:

You see a red bar

Failures/Errors are listed

Clicking on a failure
displays more detailed
information about what
went wrong

17

Demo

TDD of Fibonacci Generator

0, 1, 1, 2, 3, 5, 8, …

This is a simple example

you can find longer examples in TDD books and on the web

18

TDD in our Book

Largely follows what I’ve presented above

Rule 1: Watch tests fail before you implement code

Rule 2: Implement the simplest code possible to make the
test pass

You add more tests to make the code evolve

Life Cycle: Red, Green, Refactor

But also adds a few new points…

19

Tests Drive
Implementation

Each test should verify only one thing

Why is this important?

Avoid duplicate test code

Testing takes time; don’t waste it by running the same test
twice!

Use setup and teardown methods in testing frameworks to
eliminate redundant initialization/finalization code

Keep your tests in a MIRROR directory of your source code

src/ and test/ become top-level folders in your project dir.

20

TDD and Task
Completion

A task can be declared complete when all of its associated
tests pass

How many tests are needed?

As discussed last time you need a criteria for knowing when
you are done

Have you covered all of the functionality associated with the
task?

If you’re doing code coverage, have you achieved your target
percentage for statement and branch coverage?

21

TDD: client perspective

Writing tests first lets you work on specifying the API of the
classes involved in the test

OrderInfo info = new OrderInfo()

info.setCustomerName(“Dan”)

…

Receipt r = orderProcessor.process(info);

assertTrue(r.getConfirmationNumber() > 0)

22

TDD: tests across tasks

Occasionally you will be in a situation in which you need to
write tests that will require you to access code associated
with a different task

If that other task has not yet started, the code will not exist

Should we give up in such a situation?

No! This is an opportunity to design the API of those classes
while making progress on the current task

23

Accessing a DB

In the textbook, the developers need to access the DB
while working on the task that handles order processing

They decide to simulate DB access with a TestDBUtil class

And they’ll use the strategy pattern to do it

When they switch to working on the task associated with
creating the real DB, they’ll write a “real” DBUtil class

Note: the TestDBUtil class does not belong in the src/
directory of your project; its code that will only be used by
tests, so it should live under the test/ dir.

24

Strategy Pattern (one part
of it) 25

getGiftCard(id: int) : GiftCard
saveGiftCard(card: GiftCard): void
saveOrder(info: OrderInformation): void

«interface»
DBUtil

getGiftCard(id: int) : GiftCard
saveGiftCard(card: GiftCard): void
saveOrder(info: OrderInformation): void

MySQLDBUtil
getGiftCard(id: int) : GiftCard
saveGiftCard(card: GiftCard): void
saveOrder(info: OrderInformation): void

TestDBUtil

Talks to DB; returns
“real” objects

Simulates DB; returns
objects with “dummy” data

TDD leads to better code

TDD not only leads to more tests that help us find faults in
our code, it also

produces better organized code:
production code in one place, testing in another

packages and classes are designed from a client perspective

produces code that always does the same thing
Avoids the “if (debug) {}” trap

Loosely coupled code
Encourages the creation of highly cohesive and loosely coupled
code because that type of code is easier to test!

26

More tests always means
more code

The original version of XP

had 10 million lines of production code;

had 15 million lines of test code!

The book however now discusses “corner cases”

testing not only the success case but all the ways a particular
function might fail;

this, in turn, leads to lots of different objects that are similar
but do slightly different things (to test different cases)

This leads to a discussion of “mock objects”; see book for
details

27

Things to Avoid

Not using a criteria to determine when you are “done”
You need to be systematic if you want to ensure that you
cover all the cases associated with a particular function

Not using real data
When testing, you’ll sometimes create data to test the
system; that’s good but you need to make sure you test your
system on realistic data (perhaps received from the customer)

Forgetting to clean up after yourself: “ghosts from the past”
Need to make sure that results from previous tests are not
influencing the results of tests that come after

28

Wrapping Up

Development Techniques

Write tests first, then code to make those tests pass

After they pass, look for duplication between test code and
production code; refactor the latter to eliminate duplication
while ensuring that tests still pass

Development Principles

TDD forces you to focus on functionality; “client” perspective

Automate your tests to make refactoring safer

Covering all of your functionality leads to code coverage

29

Coming Up

Lecture 22: Safety & Liveness Properties

Read Chapter 7 of the Concurrency textbook

May also move on to Chapter 8 in that lecture

Lecture 23: Ending an Iteration

Read Chapter 9 of Head First Software Development

30

