
© University of Colorado, 2009

Version Control
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 13 — 02/24/2009

1



Goals

Review material from Chapter 6 of Pilone & Miles

Version Control & Configuration Management

Working “Without a Net”

Repository Management

Init, Add, Branch, Merge

2



Without a Net (I)

Doing software development without configuration 
management is “working without a net”

Configuration management refers to both a process and a 
technology

The process encourages developers to work in such a way that 
changes to code are tracked

changes become “first class objects” that can be named, 
tracked, discussed and manipulated

The technology is any system that provides features to enable 
this process

3



Without a Net (II)

If you don’t use configuration management then

you are not keeping track of changes

you won’t know when features were added

you won’t know when bugs were introduced or fixed

you won’t be able to go back to old versions of your software

You would be “living in the now” with the code

There is only one version of the system: this one

You would have no safety net

4



Developer 1

Developer 2

Demo Machine

AAA

Without a Net (III) 5

Two developers need to 
modify the same file for the 
task they are working on



Developer 1

Developer 2

Demo Machine

A

A

A

Without a Net (IV) 6

They both download the file 
from the demo machine, 
creating two working copies.

working copy



Developer 1

Developer 2

Demo Machine

A

A2

A1

Without a Net (V) 7

They both edit their copies 
and test the new functionality.

A1

A2



Developer 1

Developer 2

Demo Machine

A

A2

A1

Without a Net (VI) 8

Developer 1 finishes first and 
uploads his copy to the demo 
machine.

A1

A2



Developer 1

Developer 2

A2

A1

Without a Net (VII) 9

Developer 2 finishes second 
and uploads his copy to the 
demo machine.

Demo Machine

AA1A2



Without a Net (VIII) 10

This is known as “last check in wins”

At best, developer 1’s work is simply “gone” when the demo 
is run; At worst, developer 1 checked in other changes, that 

cause developer 2’s work to crash when the demo is run.

Demo Machine

AA1A2



Not Acceptable 11

This type of uncertainty and instability is simply not 
acceptable in production software environments

That’s where configuration management comes in

The book uses the term “version control”

But in the literature, “version control” is “versioning” applied to 
a single file while “configuration management” is “versioning” 
applied to collections of files



12
1

2

3

4

5

2.1

First draft of code, buggy

Fix some bugs, release v. 1.0

Begin adding spellcheck feature 

spellcheck feature complete,
may have bugs

changes merged, more bugs
fixed, release v. 2.0

Another bug fix,
release v. 1.1

Versioning



13Particular versions of 
files are included in...

... different versions of a 
configuration

File A File B Configuration Z

1

2

3 4

5

1

2

3 4

5

v. 0.1

v. 1.0

v. 1.2

1 1

3 2

5 4

Configuration Management



Developer 1

Developer 2

Repository

AAA

With a Net (I) 14

Two developers need to modify the same file for separate tasks

Demo Machine



Developer 1

Developer 2

Repository

AA

A

With a Net (II) 15

They check the file out into their own working copies

Demo Machine



Developer 1

Developer 2

Repository

A

With a Net (III) 16

They modify their copies.

Demo Machine

A1A1

A2A2



Developer 1

Developer 2

Repository

A

With a Net (IV) 17

Developer 1 finishes first.

Demo Machine

A1 A1

A2A2



Developer 1

Developer 2

Repository

A

With a Net (V) 18

Developer 2 finishes and tries to check in, but...

Demo Machine

A1 A1

A2

A2



Developer 1

Developer 2

Repository

A

With a Net (VI) 19

the change is rejected, because it conflicts with A1

Demo Machine

A1 A1

A2A2



Developer 1

Developer 2

Repository

A

With a Net (VI) 19

the change is rejected, because it conflicts with A1

Demo Machine

A1 A1

A2A2

This is known 
as “first check-

in wins”!



Developer 1

Developer 2

Repository

A

With a Net (VII) 20

What is sent back is an amalgam of A1 and A2’s changes

Demo Machine

A1 A1

A2A1/
A2



Developer 1

Developer 2

Repository

A

With a Net (VII) 20

What is sent back is an amalgam of A1 and A2’s changes

Demo Machine

A1 A1

A2A1/
A2

The file will not 
be syntactically 
correct and will 

not compile!



Developer 1

Developer 2

Repository

A

With a Net (VII) 21

It is up to Developer 2 to merge the changes correctly!

Demo Machine

A1 A1

A3A3



Developer 1

Developer 2

Repository

A

With a Net (VII) 22

He tells the repository the conflict has been resolved and 
checks the file in again

Demo Machine

A1 A1

A3

A3A3A3



Developer 1

Developer 2

Repository

A

With a Net (VII) 23

Developer 1 can now update his local copy and check the 
changes on his machine

Demo Machine

A1 A1

A3

A3A3A3



Developer 1

Developer 2

Repository

A

With a Net (VII) 24

When they are both satisfied, the system can be deployed to 
the demo machine and a successful demo occurs!

Demo Machine

A1 A1

A3

A3

A3

A3



Why Multiple Copies? 25

Old versioning systems 
(RCS) did not allow 
multiple developers to edit 
a single file at a same time

Only one dev. could 
“lock” the file at a time

What changed?
The assumption that 
conflicts occur a lot
data showed they don’t 
happen very often!

When two developers edit 
the same file at the same 
time, they often make 
changes to different parts of 
the file; such changes can 
easily be merged 

A1 A2+ A3=



Tags, Branches, and 
Trunks, Oh My! 26

Configuration management systems can handle the basics 
of checking out the latest version of a system, making 
changes, and checking the changes back in

These changes are committed to what is typically called “the 
trunk” or main line of development

git calls it the “master” branch

But configuration management systems can do much more 
than handle changes to the version of a system that is 
under active development

and that’s where tags and branches come in



Scenario (I)

In the book, a development team has released version 1.0 
of a system and has moved on to work on version 2.0

they make quite a bit of progress when their customer reports 
a significant bug with version 1.0

None of the developers have version 1.0 available on their 
machines and none of them can remember what version of 
the repository corresponded to “release 1.0”

This highlights the need for good “commit messages”

when you are checking in changes be very explicit about what 
it is you have done; you may need that information later

27



281

2

3

4

5

2.1

First draft of code, buggy

Fix some bugs, release v. 1.0

Begin adding spellcheck feature 

spellcheck feature complete,
may have bugs

changes merged, more bugs
fixed, release v. 2.0

Another bug fix,
release v. 1.1

Remember this diagram? The numbers in boxes are 
repository versions; the text in bold represent tags



29Scenario (II)

To fix the bug found in version 1.0 of their system, the developers

look at the log to locate the version that represented “release 1.0”

associate a symbolic name with that version number to “tag it”

In this case the tag might be “release_1.0”

create a branch that starts at the “release 1.0” tag

and fix the bug and commit the changes to the branch

They don’t commit to the trunk, since the associated files in the 
trunk may have changed so much that the patch doesn’t apply

once the patch is known, a developer can apply it to the trunk 
manually at a later point; or use a “merge/fix conflicts” approach



Branches are Cheap

In any complicated software system, many branches will be 
created to support

bug-fixes

e.g. one branch for each official release

exploration

possibly one branch per developer or one per “risky” feature

e.g. switching to a new persistence framework

Because of this, modern configuration management 
systems make it easy to create branches

30



Subversion Branches

In subversion, tags and branches are made in the same way

by creating a copy of the trunk (or any specified revision)

the project can be huge, containing thousands of files, and it 
doesn’t matter, branch/tag creation is completed in constant 
time and without the size of the repository changing

all that subversion does on a copy is note what the copy 
represents by pointing at the “source” version number

31



subversion cheat sheet

Create a new repository
svnadmin create <repo>

Check in new project
svn import <dir> <repo>/
<project>/trunk

Check out working copy
svn checkout <repo>/
<project>/trunk <project>

Check for updates
svn update

Check in changes
svn commit

Creating a tag
svn copy -r <version>
<repo>/<project>/trunk
<repo>/<project>/tags/<tag>

Creating a branch
svn copy -r <version>
<repo>/<project>/trunk
<repo>/<project>/branches/<branch>

tag/branch creation identical!

32



Many Graphical Tools

Standalone Applications

Versions <http://versionsapp.com/>

Integration into Development Environments

TextMate <http://macromates.com/>

These are just examples, both for MacOS X, because that’s 
my primary platform

but there are examples of these tools for multiple platforms

33

http://versionsapp.com
http://versionsapp.com
http://macromates.com
http://macromates.com


34

Versions: Browsing Project Files



35

Versions: Viewing Log Messages



36

Versions: Selecting different versions of a file for 
comparison



37

Versions: Using Apple’s FileMerge to see differences



38

TextMate: Showing subversion information on files



39

TextMate: Selecting versions of a file for comparison



40

TextMate: Viewing the differences as a “patch” file

I think I like 
FileMerge a bit 
better! :-)



41svn demo

Time for a demonstration of subversion in action!



42

Distributed Configuration 
Management (I)

With subversion and cvs (and many others), configuration 
management depends on an “official” repository

There is a notion that somewhere there is a “master copy” 
and that all working copies are subservient to that copy

This can be a limiting constraint in large projects with lots of 
developers; why?

so much so that the large project may be tempted to write its 
own configuration management system just to make progress

this is what happened with the Linux project; they produced git 
because no other configuration management system met their 
needs!



Distributed Configuration 
Management (II)

In distributed configuration management systems, like git, 
the notion of a centralized repository goes away

each and every developer has their own “official” repository

with a master branch and any other branches needed by the 
local developer

then other developers can “pull” branches from publicly 
available git repositories and “push” their changes back to 
the original repository

You can learn more about git at the git tutorial
<http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html>

43

http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html


git cheat sheet

Create a new repository
git init

Check in new project
git add . ; get commit

Check out working copy
N/A

Check for updates
N/A

Check in changes
git add <file>; git commit

Creating a tag
git tag <tag> <version>

Creating a branch
git branch <branch>

Collaboration
git clone <remote> <local>
Update

git pull <remote> <branch>

Commit
git push <remote>

44



Accidental Difficulties?

svn
adds .svn dir to each directory in your repository

if you ever have supporting files stored in a directory of your 
repository that your application reads, it needs to be aware of 
the .svn dirs and ignore them

single repository version number even in the presence of 
multiple projects

<repo>/<project1>/trunk
<repo>/<project2>/trunk

Make a change in project 2 and the version number for project 1 
is incremented!

45



Accidental Difficulties?

git
The git FAQ seems to indicate that this tool has its own set of 
accidental difficulties (you can’t avoid them!)

<http://git.or.cz/gitwiki/GitFaq>

I just don’t have enough personal experience with git to detail 
them here.

46

http://git.or.cz/gitwiki/GitFaq
http://git.or.cz/gitwiki/GitFaq


Wrapping Up 47

Version Control & Configuration Management

Inject safety and confidence into software development

Lots of tools available

cvs, svn, git, Mercurial, Visual Source Safe

http://en.wikipedia.org/wiki/Mercurial_(software)
http://en.wikipedia.org/wiki/Mercurial_(software)


Coming Up

Lecture 14: Review for Midterm

Lecture 15: Midterm

Lecture 16: Review of Midterm

48


