
© University of Colorado, 2009

Introduction to 
Concurrency
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 4 — 01/22/2008

1



Credit where Credit is 
Due

Some text and images for this lecture come from the lecture 
materials provided by the publisher of the Magee/Kramer 
textbook. As such, some material is copyright © 2006 John 
Wiley & Sons, Ltd.

2



Lecture Goals

Review material in Chapter 1 of the Magee/Kramer book

What do we mean by concurrent programs?

What do we mean by model-based software engineering?

Examine fundamental approach used in this book:

Concepts, Modeling, Practice

3



More on the Authors: 
“The Two Jeffs”

Jeff Kramer
Dean of the Faculty of Engineering and Professor of Distributed Computing 
at the Department of Computing at Imperial College London

ACM Fellow; Editor of IEEE’s Transactions on Software Engineering

Winner of numerous software engineering awards including best paper and 
outstanding research awards

Jeff Magee
Professor at the Department of Computing at Imperial College London

Long time member of the SE community with more than 70 journal and 
conference publications!

This book is based on their SE research into modeling concurrency over the 
past 20 years

4



Why worry?

“Concurrency is hard and I’ve only ever needed single-
threaded programs: Why should I care about it?”

Answer: multi-core computers, increasing use of clusters

Growth rates for chip speed are flattening

“lets wait a year and our system will run faster!”: No longer!

Instead, chips are becoming “wider”

more cores, wider bus (more data at a time), more memory

As chips are not getting faster (the same way they used to), 
a single-threaded, single process application is not going to 
see any significant performance gains from new hardware

5



New Model

Instead, the way in which software will see performance gains 
with new hardware is if they are designed to get faster the 
more processors they have available

This is not easy: the computations that an application performs 
has to be amenable to parallelization

Such an application will see noticeable speed improvements 
when run on machines with more processors

Laptops currently have 2-cores, will soon have 4-cores and Intel 
has an 80-core beast waiting in the wings

A system written for n-cores could potentially see an 80x speed-up 
when run on such a machine 

6



In addition…

Concurrent programming is becoming hard to ignore

In addition to the increasing presence of multi-core computers there 
are lots of other domains in which concurrency is the norm

Embedded software systems, robotics, “command-and-control”, high-
performance computing (use of clusters), …

Closer to home: Web programming often requires concurrent 
programming

AJAX

Web browsers are examples of multi-threaded GUI applications
without threads the UI would block as information is downloaded

7



BUT…

While concurrency is widespread it is also error prone

Programmers trained on single-threaded programs face 
unfamiliar problems: synchronization, race conditions, 
deadlocks, etc.

Example: Therac-25
Concurrent programming errors contributed to accidents 
causing death and serious injury

Mars Rover

Problems with interaction between concurrent tasks caused 
periodic software resets reducing availability for exploration

8

http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://catless.ncl.ac.uk/Risks/19.49.html
http://catless.ncl.ac.uk/Risks/19.49.html


9

Basics: Single Thread, Single Process, Single Machine

Machine

Process

Thread

Data/Code

Sequential Program == Single Thread of Control



10

Basics: Multiple Thread, Single Process, Single Machine

Machine

Process

Thread

Data/Code

Thread

Concurrent Program == Multiple Threads of Control



11

Multi-Thread: But is it truly parallel?

Machine

Process

Thread

Data/Code

Thread

Concurrent Program == Multiple Threads of Control



11

Multi-Thread: But is it truly parallel?

Machine

Process

Thread

Data/Code

Thread

Concurrent Program == Multiple Threads of Control

We may have multiple 
threads in this 
process, but we may 
not have events truly 
occurring in parallel. 
Why not?



If the machine has 
multiple processors, then 
true parallelism can 
occur. Otherwise, 
parallelism is simulated

11

Multi-Thread: But is it truly parallel?

Machine

Process

Thread

Data/Code

Thread

Concurrent Program == Multiple Threads of Control

We may have multiple 
threads in this 
process, but we may 
not have events truly 
occurring in parallel. 
Why not?

It depends on the machine!



Machine

12

Basics: Single Thread, Multiple Process, Single Machine

Process

Thread

Data/Code

Process

Thread

Data/Code

Process

Thread

Data/Code



13

Basics: Multi-thread, Multi-Process, Single Machine

Machine

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Note: You can have way more than just two threads per process.



14

Basics: Multi-everything

Machine

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Machine

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread



Applications are Dead! Long Live Applications!

15

Due to the ability to have multiple threads, multiple processes, and 
multiple machines work together on a single problem, the notion of 
an application is changing. It used to be that:

Process

Thread

Data/Code
Application == 



Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Now… we might refer to this as “an application”

16

Machine

6

Basics: Multiple Thread, Single Process, Single Machine

Process

Thread

Data/Code

Thread

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine

6

Basics: Multiple Thread, Single Process, Single Machine

Process

Thread

Data/Code

Thread

multi-threaded client,
multi-threaded server
that, in turn, relies on a 
cluster of machines to 
service the request



Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Now… we might refer to this as “an application”

16

Machine

6

Basics: Multiple Thread, Single Process, Single Machine

Process

Thread

Data/Code

Thread

For instance, we might call 
this “Google”

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine

6

Basics: Multiple Thread, Single Process, Single Machine

Process

Thread

Data/Code

Thread

multi-threaded client,
multi-threaded server
that, in turn, relies on a 
cluster of machines to 
service the request



Architecture Design 
Choices 17

When designing a modern application, we now have to ask

How many machines are involved?

What components will be deployed on each machine?

For each component:

Does it need concurrency?

If so, will we achieve concurrency via

multiple threads?

multiple processes?

both?



Consider Chrome (I)

Google made a splash last year by announcing the creation 
of a new web browser that is

multi-process (one process per tab) and

multi-threaded (multiple threads handle loading of content 
within each process)

In typical Google style, they documented their engineering 
choices via a comic book

<http://www.google.com/googlebooks/chrome/index.html>

18

http://www.google.com/googlebooks/chrome/index.html
http://www.google.com/googlebooks/chrome/index.html


Consider Chrome (II)

Some of the advantages they cite for this design
stability

single-process, multi-threaded browsers are vulnerable to 
having a crash in one tab bring down the entire browser

speed
multi-process browsers can be more responsive due to OS 
support

security
exploits in single-process browsers are easier if malware 
loaded in one tab can grab information contained in another 
tab; much harder to grab information across processes

19



Stainless

Chrome is not available for my platform

But that has not stopped independent developers from 
creating a multi-process, multi-threaded browser for the Mac

See <http://www.stainlessapp.com/> for details

Demo

20

http://www.stainlessapp.com
http://www.stainlessapp.com


Other benefits to multi-
process design*

Lots of existing applications that do useful things
Think of all the powerful command line utilities found in Unix-
based platforms; You can take advantage of that power in your 
own application

Create a sub-process, execute the desired tool in that process, 
send it input, make use of its output

Memory leaks in other programs are not YOUR memory leaks
As soon as the other program is done, kill the sub-process and 
the OS cleans up

Flexibility: An external process can run as a different user, can run 
on a different machine, can be written in a different language, …

21

* Taken from discussion in Cocoa Programming for Mac OS X by Aaron Hillegass



Example: ZIPspector

ZIPspector is a GUI application that makes use of the Unix 
command line tool zipinfo to display the contents of a zip 
archive

This example taken from Aaron Hillegass’s Cocoa 
Programming for Mac OS X

ZIPspector GUI runs in one process; When you select a zip 
archive, the program

creates a subprocess, executes zipinfo in it, captures results, 
allows subprocess to die, and then displays results in table

The multi-process aspect of this app happens very quickly!

22



Review

When we execute a program, we create a process

A sequential program has a single thread of control

A concurrent program has multiple threads of control

A single computer can have multiple processes running at once; 
If that machine, has a single processor, then the illusion of 
multiple processes running at once is just that: an illusion

That illusion is maintained by the operating system that coordinates 
access to the single processor among the various processes

If a machine has more than a single processor, then true parallelism 
can occur: you can have N processes running simultaneously on a 
machine with N processors

23



So, what’s the problem?

Concurrent programs can perform multiple computations in 
parallel and can control multiple external activities which 
occur at the same time

Sounds great. So what’s the problem?

Designing/Implementing/Testing concurrent programs is hard

Much harder than testing sequential programs due to

interference: two threads accessing shared data inappropriately

race conditions: behaviors that appear in one configuration but 
don’t appear in other configurations

deadlock: threads block waiting for each other

24



Another View: Sequential Program

3
2

1

9

8

4 7
6

5

main.java foo.java

bar.java

baz.java

db.java ui.java



Another View: Concurrent Program

3
2

1

9

8

4 7
6

5

3

1

5

2

4

main.java foo.java

bar.java

baz.java

db.java ui.java



Example of Interference

3
2

1

9

8

4 7
6

5

3

1

5

2

4

main.java foo.java

bar.java

baz.java

db.java ui.java

The potential for interactions… two threads hitting the same method 
at the same time, potentially corrupting a shared data structure



Benefits of Concurrent 
Programming?

Performance gain from multi-core hardware
True parallelism

Increased application throughput
an I/O call need only block one thread

Increased application responsiveness
high priority thread for user requests

More appropriate structure
for programs which interact with the environment, control multiple activities, 
and handle multiple events

by partitioning the application’s thread/process structure to match its 
external conditions (e.g. one thread per activity)

28



Ex.: Cruise Control System
Requirements

Controlled by three buttons
on, off, resume

When ignition is switched on 
and on button pressed, current 
speed is recorded and system 
maintains the speed of the car 
at the recorded setting
Pressing the brake, the 
accelerator, or the off button 
disables the system
Pressing resume re-enables the 
system

Two Threads: Engine and Control
Is the system safe?
Would testing reveal all errors?
How many paths through system?

29

http://www.doc.ic.ac.uk/~jnm/book/book_applets/concurrency.html
http://www.doc.ic.ac.uk/~jnm/book/book_applets/concurrency.html


Models to the Rescue!

To answer, we need a model of the concurrent behavior of 
the system and then we need to analyze it

This is one benefit of models, they focus on one particular 
aspect of the world and ignore all others

Consider the model on the front of the Concurrency book

The picture shows a real-world train next to its model

Depending on the model, you can ask certain questions and 
get answers that reflect the answers you would get if you 
asked “the real system”

30



Models to the Rescue!

For the train model, you might be able to ask

What color is the train? How long is it? How many cars does 
it have?

But not

What’s the train’s maximum speed?

How does it behave when a car derails?

31



Models, continued

A model is a simplified representation of the real world

A model airplane, e.g., used in wind tunnels, models only the 
external shape of the airplane

The reduction in scale and complexity achieved by modeling 
allows engineers to analyze properties of the model

The earliest models were physical (like our model train)

modern models tend to be mathematical and analyzed by 
computers

32



Models, continued

Engineers use models to gain confidence in the adequacy 
and validity of a proposed design

focus on an aspect of interest — concurrency
can animate model to visualize a behavior
can analyze model to verify properties

Models support hypothesis testing
we make observations and test against our model’s 
predictions
if predictions match observations, we gain confidence in the 
model; otherwise, we update model and try again

33



Models for Concurrency

When modeling concurrency

our book makes use of a type of finite state machine known 
as a labeled transition system (LTS)

LTS == Model

These machines are described textually with a specification 
language called finite state processes (FSP)

FSP == Specification Language

Used to generate an instance of an LTS

34



Models for Concurrency

These machines can be displayed and analyzed by an 
analysis tool called LTSA

Note: LTSA requires a Java 2 run time system, version 1.5.0 
or later

On Windows and Mac OS systems, you can run the LTSA 
tool by double clicking on its jar file

Note: Its not the most intuitive piece of software, but once 
you “grok it”, it provides all of the advertised functionality

35



Modeling the Cruise 
Control System

We won’t model the entire system

lets look at a simplified example

Given the following specification
CRUISE = (engineOn -> RUNNING),

RUNNING = (speed -> RUNNING | engineOFF -> CRUISE).

We can generate a finite state machine that looks like this

36



37

LTSA allows us to enter 
specifications and 
generate state machines 
like the ones on the 
previous slide

It can also be used to 
“animate” or step through 
the state machine

Lets see a demo

Note: animation at left 
shows the problem we 
encountered before with 
the cruise control system

LTSA



LTSA, continued

Using a modeling tool, like LTSA, allows us to understand 
the concurrent behaviors of systems like the cruise control 
system, BEFORE they are implemented

This can save a lot of time and money, as it is typically easier 
to test and evolve a model's behavior than it is to implement 
the system in a programming language

38



Applying Concepts/
Models via Programming

Textbook uses Java to enable practice of these concepts

Java is

widely available, generally accepted, and portable

provides sound set of concurrency features

Java is used for all examples, demo programs, and 
homework exercises in textbook

39



Applying Concepts/
Models via Programming

This is not to say that Java is the ONLY language that 
supports concurrency; many languages have concurrency 
features built-in or available via third-party libraries

As a result, I am open to students using other languages, as 
long as the language has concurrency features similar to Java

The book makes use of “toy programs” as they can focus 
quickly on a particular class of concurrent behavior

40



Wrapping Up

Concepts

We adopt a model-based approach for the design and 
construction of concurrent programs

Models

finite state machines to represent concurrent behavior

Practice

Book uses Java for constructing concurrent programs

We will be presenting numerous examples to illustrate 
concepts, models and demonstration programs

41



Coming Up Next

Lecture 5: Gathering Requirements

Chapter 2 of Pilone & Miles

Lecture 6: Processes and Threads

Chapter 2 of Magee and Kramer

42


