
OO Design 1

Object Oriented
Design

Kenneth M. Anderson
Lecture 20

CSCI 5828: Foundations of
Software Engineering

OO Design 2

Object-Oriented Design
 Traditional procedural systems separate data and

procedures, and model these separately
 Object orientation combines data and methods

together into a cohesive whole
 data abstraction

 The purpose of Object-Oriented (OO) design is to
define the classes (and their relationships) that are
needed to build a system that meets the
requirements contained in the SRS

OO Design 3

OO A&D
 OO techniques can be used in analysis

(requirements) as well as design
 The methods and notations are similar

 In OO analysis we model the problem domain, while
in OO design we model the solution domain

 Often structures created during OO analysis are
subsumed (reused, extended) in the structures
produced by OO design
 The line between OO analysis and OO design is blurry, as

analysis structures will transition into model elements of the
target system

OO Design 4

Relationship of OO A&D

OO Design 5

OO Concepts
 Encapsulation

 grouping of related ideas into one unit which we
can refer to by a single name

 For example, methods, classes, packages
 Provides information hiding by restricting the

external visibility of a unit’s information
 In OO A&D, the object is the unit of

encapsulation
 An object’s data is hidden behind the public

interface (methods) of the object

OO Design 6

OO Concepts…
 State Retention

 the functions of function-oriented design do not retain state;
an object, on the other hand, is aware of its past and
maintains state across method invocations

 Identity – each object can be identified and treated
as a distinct entity
 very important issue, see lecture 10

 Behavior – state and methods together define the
behavior of an object, or how an object responds to
the messages passed to it

OO Design 7

OO Concepts..
 Classes – a class is a stencil from which

objects are created; defines the structure and
services of a “class” of objects. A class has
 An interface which defines which parts of an

object can be accessed from outside
 A body that implements the operations
 Instance variables to hold object state

 Objects and classes are different; a class is a
type, an object is an instance
 State and identity is associated with objects

OO Design 8

OO Concepts – access

 Operations in a class can be
 Public: accessible from outside
 Private: accessible only from within the class
 Protected: accessible from within the class and

from within subclasses

OO Design 9

Inheritance

 Inheritance is unique to OO and not available
in function-oriented languages/models

 If class B inherits information from class A, it
implicitly acquires the attributes and methods
of A
 Attributes and methods of A are reused by B

 When B inherits from A, B is the subclass or
derived class and A is the base class or
superclass

OO Design 10

Inheritance..

 A subclass B generally has a derived part
(inherited from A) as well as new attributes
(new instance variables or methods)
 B’s specification only defines the new attributes

 This creates an “is-a” relationship
 objects of type B are also objects of type A

OO Design 11

Inheritance…

OO Design 12

Inheritance…
 The inheritance relationship between classes

forms a class hierarchy
 In models, hierarchy should represent the natural

relationships present in the problem domain
 In a hierarchy, all the common features of a set of

objects can be accumulated in a superclass
 This relationship is also known as a

generalization-specialization relationship
 since subclasses specialize (or extend) the more

generic information contained in the superclass

OO Design 13

OO Design 14

Inheritance…
 There are several types of inheritance

 Strict inheritance: a subclass uses all of the features of its
parent class without modification
 The subclass only adds new attributes or methods

 Non-strict inheritance: a subclass may redefine features of
the superclass or ignore features of the superclass

 Strict inheritance supports “is-a” cleanly and has
fewer side effects
 If a subclass redefines a method of the parent, it can

potentially break the contract that the superclass offers its
users

OO Design 15

Inheritance…

 Single inheritance – a subclass inherits from
only one superclass
 Class hierarchy is a tree

 Multiple inheritance – a class inherits from
more than one class
 Can cause runtime conflicts
 Repeated inheritance - a class inherits from a

class but from two separate paths

OO Design 16

Inheritance and Polymorphism

 Inheritance enables polymorphism, i.e. an
object can be of different types
 An object of type B is also an object of type A

 Hence an object has a static type and a
dynamic type
 Implications on type checking
 Also brings dynamic binding of operations which

allows writing of general code where operations
do different things depending on the type

OO Design 17

Module Level Concepts
 Basic modules are classes
 During OO design, a key activity is to specify the

classes in the system being built
 In creating our design, we want it to be “correct” (i.e.

cover its requirements)
 But a design should also be “good” – efficient, modifiable,

stable, …
 We can evaluate an OO design using three

concepts
 coupling, cohesion, and open-closed principle

OO Design 18

Coupling

 In OO design, three types of coupling exists
 interaction
 component
 inheritance

OO Design 19

Coupling…

 Interaction coupling occurs when the
methods of a class invoke methods of
another class
 this can’t be avoided, obviously…
 but we want to ensure that an object’s public

interface is used
 a method of class A should NOT directly manipulate

the attributes of another class B
 Why?

OO Design 20

Coupling…

 Component coupling – when a class A has
variables of another class C
 A has instance variables of type C
 A has a method with a parameter of type C
 A has a method with a local variable of type C

 When A is coupled with C, it is coupled with
all subclasses of C as well
 Component coupling will generally imply the

presence of interaction coupling also

OO Design 21

Coupling…

 Inheritance coupling – two classes are
coupled if one is a subclass of the other
 again, can’t be avoided, inheritance is a useful

and desirable feature of OO approaches
 however, a subclass should strive to only add

features (attributes, methods) to its superclass
 as opposed to modifying the features it inherits from

its superclass

OO Design 22

Cohesion
 Cohesion is an intramodule concept
 Focuses on why elements are together

 Only elements tightly related should exist together in a
module (class)

 This gives a module a clear abstraction and makes it easier
to understand

 Higher cohesion leads to lower coupling as many
otherwise interacting elements are already
contained in the module

 Goal is to have high cohesion in modules
 Three types of cohesion in OO design

 method, class, and inheritance

OO Design 23

Cohesion…

 Method cohesion
 A class should attempt to have highly cohesive

methods, in which all of the elements within a
method body help to implement a clearly specified
function

 Class cohesion
 A class itself should be cohesive with each of its

methods (and attributes) contributing to
implement the class’s clearly specified role

OO Design 24

Cohesion…
 Inheritance cohesion – focuses on why

classes are together in a hierarchy
 Two reasons for subclassing

 generalization-specialization and reuse
 The former occurs when the classes in the hierarchy

are modeling true semantic (“is-a”) relationships found
in the problem domain

 The latter sometimes occurs when a pre-existing class
does most of what you need but for a different part of
the semantic space; the subclass may not participate
in an “is-a” relationship; this should be avoided!

OO Design 25

Open-closed Principle

 Principle: Classes should be open for
extension but closed for modification
 Behavior can be extended to accommodate new

requirements, but existing code is not modified
 allows addition of code, but not modification of existing

code
 Minimizes risk of having existing functionality stop

working due to changes – a very important
consideration while changing code

OO Design 26

Open-closed Principle…

 In OO design, this principle is satisfied by
using inheritance and polymorphism
 Inheritance allows creating a new class to extend

behavior without changing the original class
 This can be used to support the open-closed

principle
 Consider example of a client object which

interacts with a printer object for printing

OO Design 27

Example

OO Design 28

Example..
 Client directly calls methods on Printer1
 If another printer is required

 A new class Printer2 will be created
 But the client will have to be modified if it wants to use this

new class
 Alternative approach

 Have Printer1 be a subclass of an abstract base class
called Printer

 Client is coded to access a variable of type Printer, which is
instantiated to be an instance of the Printer1 class

 When Printer2 comes along, it is made a subclass of
Printer as well, and the client can use it without
modification

OO Design 29

Example…

OO Design 30

Liskov’s Substitution Principle

 Principle: A program using an object o1 of
base class C should remain unchanged if o1
is replaced by an object of a subclass of C
 The open-closed principle allows the creation of

hierarchies that intrinsically support this principle

OO Design 31

Unified Modeling Language
(UML) and Modeling

 UML is a graphical design notation useful for
OO analysis and design
 Provides nine types of diagrams to model both

static and dynamic aspects of a software system
 UML is used by various OO design

methodologies to capture decisions about the
structure of a system under design

OO Design 32

Modeling
 Modeling is used in many disciplines
 A model is a simplification of reality

 “All models are wrong, some are useful”
 A good model includes those elements that

have broad effect and omits minor elements
 A model of a system is not the system!

 We’ve covered models at the beginning of
the semester in the concurrency textbook

OO Design 33

Modeling

 UML is used to create models of OO systems
 It contains notations to model both structural

and behavioral aspects of these systems
 Structure-related notations

 class, object, package, use case, component, and
deployment diagrams

 Behavior-related notations
 structure, collaboration, state, and activity diagrams

OO Design 34

Class Diagrams

 The class diagram is a central piece of the
design specification of an OO design. It
specifies the
 classes in a system
 the associations between classes

 including aggregation and composition relationships
 the inheritance hierarchy

 We covered class diagrams back in lecture
10

OO Design 35

Interaction Diagrams
 Class diagrams represent static structures

 They do not model the behavior of a system
 Interaction diagrams are used to provide insight into

a system’s dynamic behavior
 Useful for showing, e.g., how the objects of a use case

interact to achieve its functionality
 Interaction is between objects, not classes

 An object look likes a class, except its name is underlined
 Interaction diagrams come in two (mostly

equivalent) styles
 Collaboration diagram
 Sequence diagram

OO Design 36

Sequence Diagram
 Objects participating in an interaction are shown at

the top
 For each object a vertical bar represents its lifeline
 A message from one object to another is represented as a

labeled arrow
 Messages can be guarded (similar to boolean guards in

FSP)
 The ordering of messages is captured along a

sequence diagram’s vertical axis

OO Design 37

Example – sequence diag.

OO Design 38

Collaboration diagram

 Also shows how objects interact
 Instead of a timeline, the diagram shows the

instantiation of associations between classes
at run-time
 The ordering of a set of messages is captured by

numbering them

OO Design 39

Example – collaboration diag

OO Design 40

Other Diagrams

 State diagrams (Labeled Transition Systems)
 Activity diagrams (from Scott Ambler’s website)

OO Design 41

OO Design Methodologies

 Many OO A&D methodologies have been
proposed

 Basic goal is to identify classes, understand
their behavior, and relationships
 Different UML models are used for this

OO Design 42

OO Design
 Basic steps (note: different from text book)

 Step 1: Analyze use cases
 Step 2: Create activity diagrams for each use case
 Step 3: Create class diagram based on 1 and 2
 Step 4: Create interaction diagrams for activities contained

in diagrams created in step 2
 Step 5: Create state diagrams for classes created in step 3
 Step 6: Iterate; each step above will reveal information

about the other models that will need to be updated
 for instance, services specified on objects in a sequence

diagram, have to be added to those objects’ classes in the
class diagram

OO Design 43

Restaurant example: Initial classes

OO Design 44

Note: this is not pure
UML notation; see
Lecture 10 for
Additional details

OO Design 45

Restaurant example: sequence diagram

OO Design 46

Metrics

 OO metrics focus on identifying the
complexity of classes in an OO design
 Weighted Methods per Class
 Depth of Inheritance Tree
 Number of Children
 Coupling Between Classes
 Response for a Class
 Lack of Cohesion in Methods

OO Design 47

Weighted Methods Per Class
 The complexity of a class depends on the

number of methods it has and the complexity
of those methods
 For a class with methods M1, M2, …, Mn,

determine a complexity value for each method, c1,
c2, …, cn
 using any metric that estimates complexity for

functions (estimated size, interface complexity, data
flow complexity, etc.)

 WMC = Σci ; this metric has been shown to have a
reasonable correlation with fault proneness

OO Design 48

Metrics…
 Depth of Inheritance Tree

 DIT of class C is depth from the root class
 DIT is significant in predicting fault proneness

 basic idea: the deeper in the tree, the more methods a
particular class has, making it harder to change

 Number of Children
 Immediate number of subclasses of C
 Gives a sense of reuse of C’s features
 Most classes have a NOC of 0; one study showed,

however, that classes with a high NOC had a tendency to
be less fault prone than others

OO Design 49

Metrics…

 Coupling between classes
 Number of classes to which this class is coupled
 Two classes are coupled if methods of one use

methods or attributes of another
 A study has shown that the CBC metric is

significant in predicting the fault proneness of
classes

OO Design 50

Metrics…
 Response for a Class

 CBC metric does not quantify the strength of the
connections its class has with other classes (it only counts
them)

 The response for a class metric attempts to quantify this by
capturing the total number of methods that can be invoked
from an object of this class

 Thus even if a class has a CBC of “1”, its RFC value may
be much higher

 A study has shown that the higher a class’s RFC value is,
the larger the probability that class will contain defects

OO Design 51

Metrics…
 Lack of cohesion in methods

 Two methods form a cohesive pair if they access common
variables (they form a non-cohesive pair if they have no
common variables)

 LCOM is the number of method pairs that are non-cohesive
minus the number of cohesive pairs

 Highly cohesive classes have small LCOM values
 A high LCOM value indicates that the class is trying to do

too many things and its features should be partitioned into
different classes

 However, a study found that this metric is NOT
useful in predicting the fault proneness of a class

OO Design 52

Metrics

 Note: the study referenced in the previous
slides was published in the following paper
 V. R. Basili, L. Briand, and W. L. Melo. A

validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software
Engineering, 22(10):751-761, Oct 1996.

OO Design 53

Summary
 OO design is a newer paradigm that is replacing function-

oriented design techniques
 OO A&D combines both data and methods into cohesive units

(classes)
 UML is a notation that is often used to model OO systems

 It provides various diagrams for modeling a system’s structure,
dynamic behavior, states, architecture, etc.

 Creating an OO design is an iterative process based on
applying the knowledge stored in a system’s use cases

 Several OO metrics exist that are useful in prediciting the fault
proneness of a class

