
Lecture 25
The Mythical Man-Month

(Part 3)

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

April 18, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• Discuss additional issues from
The Mythical Man-Month
– Plan to Throw One Away

– The Whole and the Parts

– Hatching a Catastrophe

– The Other Face

• Skipping
– Chapters 9, 10, and 12

April 18, 2000 © Kenneth M. Anderson, 2000 3

Plan to Throw One Away

• Brooks says
– Plan to throw one (a software system) away;

you will, anyhow.

• Why?
– Consider our example of chemical engineers

• Scaling a laboratory result up to actual (and
practical) use requires a pilot step

• desalting water 10,000 gallons/day to 2,000,000

April 18, 2000 © Kenneth M. Anderson, 2000 4

Why?, continued

• Software projects typically plan to deliver
the first thing they build to customers
– Problems

• These systems are typically hard-to-use, buggy,
inefficient, etc.

• Experience shows that you will discard a lot of the
first implementation anyway! (Multics paper, 1972)

April 18, 2000 © Kenneth M. Anderson, 2000 5

Why?, continued

• Brooks further argues
– The management question

• Plan to build a system to throwaway
– or

• Plan to build a throwaway that is delivered to the
customer

– Results
• former: experience gained; feedback can be applied

• latter: user is aggravated and demands support

April 18, 2000 © Kenneth M. Anderson, 2000 6

Rapid Prototypes

• Brooks is essentially arguing for rapid prototypes
• (although he doesn’t follow through)

– They help gain early feedback

– They are intended from the start to be thrown away
• We have already discussed some of the problems associated

with prototypes; these problems illustrate the need to educate
all stakeholders in the purpose of prototypes

• Instead he focuses on planning for change in a
large software project

April 18, 2000 © Kenneth M. Anderson, 2000 7

One cause of change

• A programmer delivers satisfaction of a
user need rather than any tangible product
– And both the actual need and the user’s

perception of that need will change as programs
are built, tested, and used.

• Cosgrove, 1971

• Other factors
– hardware, assumptions, and environment

April 18, 2000 © Kenneth M. Anderson, 2000 8

Handling change in systems

• modularization and subroutines

• precise and complete interfaces
– standard calling sequences

– complete documentation

• table-driven techniques

• high-level languages

• configuration management

April 18, 2000 © Kenneth M. Anderson, 2000 9

Organizational Issues

• Culture must be conducive to documenting
decisions; otherwise nothing gets documented

• Brooks other points consider
– job titles

– keeping senior people trained

– using the surgical team to combat the “too valuable”
syndrome

• A lot of these, as discussed last time, are specific
to IBM (back in the late 60s) and difficult to apply

April 18, 2000 © Kenneth M. Anderson, 2000 10

Brooks on Maintenance

• Two Steps Forward and One Step Back
– Campbell’s life cycle of bugs (Fig. 11-2)

– Fixing a bug has a chance of adding another
• Lots of regression testing needed

• One Step Forward and One Step Back
– Maintenance is an entropy-increasing process

• As maintenance proceeds, the system is less
structured than before; conceptual integrity degrades

April 18, 2000 © Kenneth M. Anderson, 2000 11

The Whole and the Parts

• How does one build a successful program?
– Focus on the specifications and test them!

• Testing should be preformed by an external group

– Top-down Design
• Design as a set of refinement steps

• Use of abstraction at each level

• Modular decomposition

April 18, 2000 © Kenneth M. Anderson, 2000 12

The Whole and the Parts, continued

• Other techniques
– Structured Programming

– Component Debugging

– System Debugging
• Use debugged components (reuse)

• Build scaffolding (stubs, test data)

• Control Changes

• Add one component at a time, and quantize updates

April 18, 2000 © Kenneth M. Anderson, 2000 13

Hatching a Catastrophe

• How does a project get to be a year late?
– One day at a time!

• Major Calamities are “easy” to handle
– The whole team pulls together and solves it

• It’s the day by day slippage that is harder to
recognize
– People are sick; machines go down, etc.

April 18, 2000 © Kenneth M. Anderson, 2000 14

How to keep it on track?

• First, have a schedule!

• Second, have milestones
– Not “coding complete”

– But “specifications signed by architects”

– Or “debugged component passes all tests”
• government data

– estimates made and revised two weeks early do not change as the
start time draws near, no matter how wrong they end up being

– overestimates come steadily down as the activity proceeds

– underestimates do not change until scheduled time draws near

April 18, 2000 © Kenneth M. Anderson, 2000 15

How to keep it on track?

• Third, track the critical path
– who is waiting on who to finish what

• Fourth, address the “status disclosure problem”
– Managers must distinguish between action meetings and status

meetings
• If inappropriate action is taken in response to a status report, it

discourages honest status reports
– better to schedule an action meeting after the true status is known

– Rule of thumb on schedules: have two dates “scheduled” and
“estimated”

• the former is owned by the top level product manager

• the latter is owned by the manager directly involved with the artifact

April 18, 2000 © Kenneth M. Anderson, 2000 16

The Other Face

• A program needs to be well-documented
– Thomas J. Watson and the cash registers

• Document how to use the program
– purpose, environment, I/O formats, options, etc.

• Document how to believe the program
– Test cases

• Document how to modify the program
– architecture diagrams, algorithm description, file

hierarchy, data-flow, extensibility mechanisms, etc.

