
Lecture 22:
Software Architecture

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

April 6, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• Software Architecture
– Specification

– Examples
• Chemical Abstract Machine

• C2

April 6, 2000 © Kenneth M. Anderson, 2000 3

Architecture Specification

• Design Elements

• Form
– Relationships among elements

• Rationale
– Justification or arguments for choices of

elements and form

• Constraints
– Properties and weights

April 6, 2000 © Kenneth M. Anderson, 2000 4

Design Elements

• Processing Elements
– Components that transform data elements

• Data Elements
– Information within a system

• Connectors
– “Glue” that holds an architecture together

• A Useful Metaphor
– Consider Polo, Water Polo, and Soccer: Similar in

processors and data, but differ in connectors

April 6, 2000 © Kenneth M. Anderson, 2000 5

Formal Specification

• Structure (Form)
– How is the system organized?

• Function
– What does the system compute?

• Compatibility
– When is a system properly composed?

• Specializations
– How are generic systems constrained?

April 6, 2000 © Kenneth M. Anderson, 2000 6

Benefit of Formal Specs?
Analysis

• Consistency of Style Constraints

• Satisfaction of Style by Architecture

• Satisfaction of Requirements by
Architecture and of Architecture by
Implementation

• Consistency of Structure and of Behavior

• Effects of Changes

April 6, 2000 © Kenneth M. Anderson, 2000 7

Chemical Abstract Machine: CHAM

• A Convenient Metaphor
– Components are like molecules

– Systems are like solutions

– Molecules interact (i.e., react)

– Rules govern interaction

– State of system is like state of solution

• Mathematical Foundation
– Term rewriting

April 6, 2000 © Kenneth M. Anderson, 2000 8

CHAM Background

• Developed by Berry and Boudol in 1992
– Used as a generalized computation framework

– Has also been applied to parallel programming

• Applied to Software Architectures in 1995
– by Paola Inverardi and Alex Wolf

– extended to detect architectural mismatch: 1999

– extended to static checking of system behaviors
• to appear in ACM TOSEM

April 6, 2000 © Kenneth M. Anderson, 2000 9

CHAM Terminology

• A CHAM is specified by
– defining molecules m1, m2, …

– and solutions s0, s1, … of molecules
• think of a “chemical solution”

• Molecules are basic elements of a system

• Solutions represent states
– and are represented by multisets of molecules

April 6, 2000 © Kenneth M. Anderson, 2000 10

CHAM Terminology, continued

• A solution is denoted as a comma separated
list of molecules enclosed in braces
– { m1, m2, … }

– A solution can contain sub-solutions

• CHAMs evolve via transformation rules
– t1, t2, …

– Transformations occur on solutions, thus
moving a CHAM from state to state

April 6, 2000 © Kenneth M. Anderson, 2000 11

Transformation Rules

• A transformation rule can be applied to a
solution if it matches the rule’s condition
– A condition is specified as a premise of the rule

• Rules are enabled if their condition is met
– If multiple rules are enabled for a single

solution, one of the enabled rules is selected
non-deterministically to transform the solution

• Inert solution: no enabled rules
April 6, 2000 © Kenneth M. Anderson, 2000 12

Specifying Software Architectures

• Using a CHAM to specify a software arch.
– Molecules define a system’s components

– Initial state of a system is defined by a solution

– Transformation rules define system behavior

• In addition, a set of solutions can be
specified to represent “legal” final states of
a system

April 6, 2000 © Kenneth M. Anderson, 2000 13

Example: Client-Server System

• Details
– Consists of single server and single client

– Server provides a single piece of data and the
client requests that piece of data

• Later
– we will extend the example to two clients

April 6, 2000 © Kenneth M. Anderson, 2000 14

Example: Define syntax

• Syntax
– M ::= P | C | D | M ◊ M

– P ::= Server | Client1

– C ::= serve(D) | request(D)

– D ::= data

• Operator ◊ indicates
status of client/server
– serve(data) ◊ Server

• denotes that the server
is ready to serve a client

– Server ◊ serve(data)
• denotes that the server

is unable to serve a
client

April 6, 2000 © Kenneth M. Anderson, 2000 15

Example: Define Initial Solution

• s0
{serve(data) ◊ Server, request(data) ◊ Client1}

• Server ready to serve data

• Client ready to request data

• Now we need transformation rules

April 6, 2000 © Kenneth M. Anderson, 2000 16

Example: Define Rules

• T1
serve(d) ◊ p1, request(d) ◊ p2 →
p1 ◊ serve(d), p2 ◊ request(d)

• T2
– p ◊ c → c ◊ p

April 6, 2000 © Kenneth M. Anderson, 2000 17

Example: Execution

• s0
{serve(data) ◊ Server, request(data) ◊ Client1}

• Apply t1 to s0: end in s1
{Server ◊ serve(data) , Client1 ◊ request(data)}

• Apply t2 to s1: end in s2
{serve(data) ◊ Server, Client1 ◊ request(data)}

• And so on...

April 6, 2000 © Kenneth M. Anderson, 2000 18

Example: Add a client

• Modify Syntax
– P ::= Server | Client1 | Client2

• New s0
{serve(data) ◊ Server, request(data) ◊ Client1,

request(data) ◊ Client2}

• With new client, we now have an element
of non-determinism

April 6, 2000 © Kenneth M. Anderson, 2000 19

Example: Add new rule

• t3
p ◊ c → p

• And add a “final state” sN
– {serve(data) ◊ Server, Client1, Client2}

• We can now start to ask questions:
– Can the system reach its final state?

– Are there any inert states?

– etc.
April 6, 2000 © Kenneth M. Anderson, 2000 20

Example: C2 Architectural Style

• Evolved from the Chiron User-Interface
Development System

• Components and Connectors
– each potentially with their own thread of control

• Constraint
– Components can “see” “up” an architecture not “down”

• Benefit: Subsystems are Substitutable

• Research being conducted on C2 today...

