Lecture 19
Configuration Management

Kenneth M. Anderson
Foundations of Software Engineering
CSCI 5828 - Spring Semester, 2000

These slides taken from...

A Reusable, Distributed Repository
for Configuration Management
Policy Programming

Dissertation Defense
André van der Hoek

Software Engineering Research Laboratory

University of Colorado at Boulder

Dissertation Advisor: Alexander L. Wolf

Configuration Management

+ “Configuration management (CM) is a
discipline whose goal is to control changes
to large software through the functions of:
component identification, change tracking,
version selection and baselining, software
manufacture, and managing simultaneous
updates (team work).”

Walter Tichy, SCM-1, 1988

CM Functionality
I I
Components Structure Construction Controlling
*Versions *System model *Building *Access control
*Configurations *Interfaces *Snapshots *Change requests
*Baselines *Consistency *Regeneration *Bug tracking
*Project contexts *Selection *Optimization Partitioning

Accounting Auditing Process Team
+Statistics *History Lifecycle support|l | *Workspaces
Status *Traceability *Task mgmt. *Propagation
*Reports *Logging *Communication *Families

Documentation

Susan Dart, SCM-3, 1991

Existing CM Systems

+ Process-based configuration management

e ClearCase, Continuus, Razor, TrueChange, ...
+ Version control

e CVS, Perforce, RCS, SourceSafe, StarTeam, ...
+ Build

o dmake, imake, Jam, make, nmake, Openmake, ...
+ Miscellaneous

o Merge Right, RTPatch, WebKeeper, ...

Challenges and Pressures

+ Manage artifacts other than source code
o Web sites, software architectures, legal databases
+ Obtain customized solutions
o comply with company standards, synchronize via
e-mail, trace fine-grained artifacts
+ Research and develop new approaches

o feature logic, module-based CM, software
deployment

All in a distributed setting!

Problem

+ Difficult to adapt/extend existing CM systems
o strongly geared towards source code
« inflexible

e rigid architecture

+ Difficult to build from scratch
« several rounds of prototyping
e large amount of infrastructure

e distribution

Goal

+ Define and develop an abstraction layer that
provides a testbed for CM policy programming
« rapid development of new, prototype CM systems
o rapid experimentation with new CM policies
o inherent distributed operation
+ Focus: storage, versioning, distribution, and
access

+ Out of scope: CM policy integration

Roadmap

+ Abstraction layer
e key observation
o CM repository versus CM policy
e repository model
e programmatic interface

+ Evaluation

+ Conclusions

Key Observation:
Separation of CM Repository from CM Policy

CM policy Z |
(Wi cMm policy Y |

CM system = (chi cM policy X
CM repository + (checkout/checkin)
CM policy
Generic and distributed
CM repository
ono CM repository =
cd ¢ repository model +

programmatic interface

CM Repository versus CM Policy

CM Repository CM Policy
+ store for versions of + specific procedures for

software artifacts and creating, evolving, and
information about these assembling versions of
artifacts artifacts

+ knows about versions + maintains relationships
among versions

+ places artifacts in specific
locations

+ supports distribution

Repository Model

+ Five submodels are defined
o storage model
distribution model

naming model

access model

attribute model

+ Others could be added

e security model

SpellChecker

Basic Storage Model

WordProcessor Draw1ngEd1tor

GUI-lib Graphics Menu

> > oo

Versioning in the Storage Model

7 s

DrawingEditor

WordProcessor

SpellChecker GUI-lib Graphics Menu SmartMenu

FileReader.c Windows.c Frame.c PullDown.c PushUp.c

FlleReader c Wlndows c Frame c PullDown c PushUp c / \
!
Distribution Model Naming Model
WordProcesslor DrawingEdiltor

SpellChecker GUI-lib

&

Milano

Menu SmartMenu

Graphics
Boulder
PullDown.c PushUp.c
“Rotterda
Windows.c ~ Frame.c

+ Versioned path name
+ Crosses distribution boundaries

+ Examples
o //Boulder/WordProcessor/SpellChecker/FileReader.c
o //Boulder/WordProcessor/GUI-lib/Frame.c
« //Milano/DrawingEditor/Graphics:3/Frame.c
o //Milano/DrawingEditor:1/SmartMenu:2/PullDown.c:2

Examples

Drawinggditor

FileReader.c

Access Model

/ user manipulation \

User view

S B

>

transformation by CM policy

CM workspace

.../WordProcessor/SpellChecker/FileReader.c
/GUI-lib/Window.c

/Frame.c

workspace materialization

CM repository

User view

User manipulation

Transformation by CM policy
CM workspace
Workspace materialization

CM repository

Attribute Model

Revision = 1.0
Author = Andre
Change comment = initial version

Revision = 1.1
Author = Antonio
Change comment = adapted to HP

Revision = 1.2
Author = Andre
Lock = andre@cs.colorado.edu

Programmatic Interface

Access Versioning Collection Distribution
sopen einitiateChange sadd esetmyServer
sclose sabortChange sremove egetLocation
scommitChange erename °move
scommitChange- sreplaceVersion
AndReplace *copy
elist
Deletion Query Attribute
destroyVersion sgetType testAndSet
sversion eset
elastVersion eget
sexistsVersion sremove
eisInitiated selectVersions
*isOpen

Example

\

GUI-lib

.../GUI-lib/Windows.c
/Frame.c

Windows.c Frame.c

o

.nc_open(GUI-lib)
.nc_open(GUI-lib/Windows.c)
.nc_open(GUI-lib/Frame.c)

. nc_initiatechange(GUI-lib)

. nc_initiatechange(GUI-lib/Frame.c)

DN BN W N -

Example (continued)

\

GUI-lib

=

Windows.c Frame.c

A

6. nc_commitChange(GUI-lib/Frame.c)

.../GUI-lib/Windows.c
/Frame.c

Example (continued)

\

GUI-lib

.../GUI-lib/Windows.c
/Frame.c

Windows.c Frame.c

7. nc_replaceVersion(GUI-lib, Frame.c, 2)
8. nc_commitChange(GUI-lib)

Key Principles underlying the Abstraction Layer

+ Policy independent

+ Simple yet precise

+ Inherently distributed
+ Orthogonal

e isolation of distribution

Roadmap

+ Abstraction Layer

+ Evaluation
e expressiveness
o feasibility
o utility & validity
+ Conclusions

Expressiveness

+ Versioning aspects of existing CM policies

 checkout/checkin, composition, long transaction,
change set

+ Distribution aspects of existing CM policies

o client-server workspaces, peer-to-peer repositories,
distributed long transaction, repository replication

+ Non-traditional CM policies
o movement upon checkout, product family

architectures
Checkout/Checkin Policy Repository Design
Atrtifacts Trees

o> b

Windows.c Frame.c

+ Pattern
 check out an artifact version into a workspace
» manipulate its contents in the workspace

 check in the new contents to a repository as a new
revision or new variant

+ Individual artifacts
+ Revisions and variants form a version tree
+ Checked out artifacts are locked

Windows.c Frame.c

- — CoCiVersion = 1.0 1.0-pred = {}
1.0-suc= {1.1, 1.1.1.0}
- ___ CoCiVersion=1.1 1.1-pred = {1.0}
Label = REL1.0B T 1d-suc= 0
____ CoCiVersion=1.1.1.0 1.1.1.0-pred = {1.0}
Lock = John@doe.net 1.1.1.0-suc = {1.0}

Core Policy Design

proc lock { artifact user } {
if { [nc_testandsetattribute Sartifact “Lock” Suser] == “false” } {
set lockuser [nc_getattributevalue $artifact “Lock”]
puts “$artifact is locked by user $lockuser”
exit

}
1

proc checkout { workspace content version } {
set user $env(USER)
set host $env(REPOSITORYHOME)
set artifact “//$Shost/Artifacts/$content”
set filename [file tail $content]
set wsartifact “Sworkspace/$filename”
set storageversion [lindex [nc_selectversions $artifact “PolicyVersion” $version] 0]
set artifact “$artifact:$storageversion”
lock $artifact $user
nc_open S$artifact $workspace

nc_initiatechange $wsartifact

Peer-to-Peer Repositories Policy

+ Pattern
e checkout/checkin

+ Manages compound artifacts
+ Each artifact can be stored in a different location

e cross-repository membership

Repository Design

BOULDER

C
artifacts

artifacts

MILANO

artifacts

Core Policy Design

proc createfederation { myhost collection itshost theartifact } {
set user $env(USER)
set workspace “‘/tmp/workws”
set filename [file tail $collection]
set artifact *“//myhost/Artifacts/$collection”
set wsartifact “$workspace/$filename”

lock $artifact Suser

nc_open S$artifact $workspace
nc_initiatechange $wsartifact
nc_add //$itshost/theartifact
nc_commitchange $wsartifact
nc_close $wsartifact
nc_removeattribute $artifact “Lock”

Movement upon Checkout Policy

+ Pattern
e peer-to-peer repositories

+ Artifacts move from physical repository to
physical repository

« move is triggered by checkout

Repository Design

BOULDER

artifacts

artifacts

MILANO

artifacts
L

Core Policy Design

proc movingcheckout { workspace content version } {
set user $env(USER)
set host $env(REPOSITORYHOME)
set artifact “//$Shost/Artifacts/$content”
set tree “//$host/Trees/$content”
set filename [file tail $content]
set wsartifact “Sworkspace/$filename”
set storageversion [lindex [nc_selectversions $artifact “PolicyVersion” $version] 0]
set artifact “Sartifact: $storageversion”
set locked [nc_testandsetattribute $artifact “Lock” $user]

lock $artifact $user

nc_open $artifact $workspace
nc_initiatechange $wsartifact
nc_move $artifact $host
nc_move Stree $host

Feasibility

+ Abstraction layer is implemented and in use

o« NUCM (Network-Unified Configuration
Management)

+ Internal separation of concerns

e incremental layering

 low impact of changes to models & interface classes
+ Limitations in functionality

 no caching, compression, or delta storage

High-Level Architecture

o ——
CM policy x CM policy x
NUCM client NUCM client

Access

Access server -
| server Physical

Physical
repository

repository

Access

| server Logical
Physical repository

repository
CM policy y
NUCM client

CM policy x
NUCM client

Utility & Validity

+ Three novel prototype CM systems

e DVS -- distributed, collaborative document
authoring

o SRM -- distributed, coordinated software release
management

e WebDAYV -- standard extension to HTTP for
distributed authoring and versioning

+ Little effort required in the implementation
+ Rapid experimentation with CM policies

DVS Goal

+ Support asynchronous collaborative document
authoring

« centered around workspaces and locking

e assumes linear evolution of artifacts

+ Seamless support for distribution

CM policy:
peer-to-peer repositories with (modified) composition

DVS Experience

+ In use for over two years

o grant proposals (CU, UCI, Northrup, Aerospace)

o daily paper writing (Colorado, Italy, disconnected)
+ No code was written to deal with distribution

o relies entirely on NUCM
+ Only 3,000 lines of source code

+ Policy has been adjusted while in use

SRM Goal

+ Simplify release process
o multiple versions
« dependency specification
« multiple release repositories
+ Simplify retrieval process
o deliver a system and its dependencies
e transparent distribution

CM policy:
linear versioning with controlled peer-to-peer repositories

SRM Experience

+ In use for over three years
« DARPA EDCS program
o CU Software Engineering Research Laboratory

+ Retrieved over 350 times
» Boeing, Raytheon, AT&T, Dallas Cowboys, ...

+ NUCM-oriented code: about 10 percent
+ Distribution-oriented code: about 2 percent

e join and leave

WebDAYV Goal

+ Extend HTTP protocol
« metadata
e collections
e name space management
e locking

e version management

CM policy:
checkout/checkin with client-server workspaces

WebDAYV Experience

+ Limited to being a partial prototype

+ Rapid implementation
e 4 hours for checkout/checkin policy

« one week total, including UI development

+ Core of the checkout/checkin policy is a reuse
of an earlier, unrelated prototype

+ Shows potential for rapid prototyping

Additional, Unexpected Characteristics
+ Evolution
o CM policies can be changed relatively easy
o limited impact on repository design from changes
to policies
+ Reuse

o CM policies incorporate parts of repository and
core policy designs from other CM policies

Both need to be further investigated!

Evaluation Summary

+ Expressiveness

« many different CM policies

« many different distribution policies

o wide variety of different kinds of artifacts

+ Feasibility

o actual implementation that is in use

+ Utility

o actual (prototype) CM systems that are in use

Evaluation Summary (continued)

+ Validity
e rapid construction of prototype CM systems
o rapid experimentation with CM policies

« inherent distributed operation

+ Additional, unexpected characteristics
o evolution of CM prototypes build with NUCM

« incremental nature of CM policies

Roadmap

+ Abstraction layer

+ Evaluation

+ Conclusions

« related work

contributions
limitations
research impact

future work

Related Work -- Architectural Evolution

Perforce, RCS, SCCS ClearCase, Continuus, NUCM, CME, CoMa,
SourceSafe, etc. TrueCHANGE, etc. Gradient, ScmEngine

CM policy
implementation
via
CM-specific API

CM policy
implementation

Complete
CM system
implementation

via
generic API

CM-specific
distributed

Generic repository
database

Evolution over time

Related Work -- Alternative Platforms

+ CME (Xcc Software, 1997)

e limited to composition policy; not distributed
+ CoMa (Westfechtel, 1996)

o limited to composition policy; not distributed
+ Gradient (AT&T Bell Laboratories, 1996)

e limited to checkout/checkin policy; replicated
repositories

+ ScmEngine (Ci et al., 1997)
o limited to distributed checkout/checkin policy

Related Work -- Other Domains

+ Groupware
« collaborative workspaces, not isolated workspaces

o very different issues, especially in a distributed
setting

+ Versioned databases
« focus on generality, not on a specific domain

e abstraction layer can be viewed as a specific
schema with a number of standard views

Contribution
+ Abstraction layer that provides a reusable
testbed for CM policy programming
« model of a generic CM repository
e programmatic interface
+ Intended to lead to...
o ..new design methods for CM systems
e ...complete platform for constructing CM systems

Limitations

+ Abstraction layer
« inefficient in managing fine-grained artifacts
o at times leads to heavy-weight solutions

+ Implementation
e currently not scaleable

o currently not reliable

Research Impact

+ NUCM has been downloaded over 250 times
e many CM organizations
+ Circumstantial evidence
o Perforce -- old distribution model
o TrueCHANGE -- release management
e WebDAYV -- collection mechanism

Future Work

+ Can we futher raise the level of abstraction?
o high-level CM policy programming language

+ Can we broaden the functionality of the testbed?
e include merge, build, and process interfaces

+ Can we apply the testbed to other domains?
¢ groupware

+ Can we improve the functionality without
changing the external interface?

 smart caching, compression, delta storage

