
Lecture 19
Configuration Management

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

These slides taken from...

A Reusable, Distributed Repository
for Configuration Management

   Policy Programming

Dissertation Defense

André van der Hoek

Software Engineering Research Laboratory

University of Colorado at Boulder

Dissertation Advisor: Alexander L. Wolf

Configuration Management

✦ “Configuration management (CM) is a
discipline whose goal is to control changes
to large software through the functions of:
component identification, change tracking,
version selection and baselining, software
manufacture, and managing simultaneous
updates (team work).”

Walter Tichy, SCM-1, 1988

Construction
•Building
•Snapshots
•Regeneration
•Optimization

Construction
•Building
•Snapshots
•Regeneration
•Optimization

Auditing
•History
•Traceability
•Logging

Auditing
•History
•Traceability
•Logging

Components
•Versions
•Configurations
•Baselines
•Project contexts

Components
•Versions
•Configurations
•Baselines
•Project contexts

CM Functionality

Susan Dart, SCM-3, 1991

Accounting
•Statistics
•Status
•Reports

Accounting
•Statistics
•Status
•Reports

Process
•Lifecycle support
•Task mgmt.
•Communication
•Documentation

Process
•Lifecycle support
•Task mgmt.
•Communication
•Documentation

Controlling
•Access control
•Change requests
•Bug tracking
•Partitioning

Controlling
•Access control
•Change requests
•Bug tracking
•Partitioning

Team
•Workspaces
•Propagation
•Families

Team
•Workspaces
•Propagation
•Families

Structure
•System model
•Interfaces
•Consistency
•Selection

Structure
•System model
•Interfaces
•Consistency
•Selection



Existing CM Systems

✦ Process-based configuration management
• ClearCase, Continuus, Razor, TrueChange, …

✦ Version control
• CVS, Perforce, RCS, SourceSafe, StarTeam, …

✦ Build
• dmake, imake, Jam, make, nmake, Openmake, …

✦ Miscellaneous
• Merge Right, .RTPatch, WebKeeper, …

Challenges and Pressures

✦ Manage artifacts other than source code
• Web sites, software architectures, legal databases

✦ Obtain customized solutions
• comply with company standards, synchronize via

e-mail, trace fine-grained artifacts

✦ Research and develop new approaches
• feature logic, module-based CM, software

deployment
All in a distributed setting!

Problem

✦ Difficult to adapt/extend existing CM systems
• strongly geared towards source code

• inflexible

• rigid architecture

✦ Difficult to build from scratch
• several rounds of prototyping

• large amount of infrastructure

• distribution

Goal

✦ Define and develop an abstraction layer that
provides a testbed for CM policy programming
• rapid development of new, prototype CM systems

• rapid experimentation with new CM policies

• inherent distributed operation

✦ Focus: storage, versioning, distribution, and
access

✦ Out of scope: CM policy integration



Roadmap

✦ Abstraction layer
• key observation

• CM repository versus CM policy

• repository model

• programmatic interface

✦ Evaluation

✦ Conclusions

CM policy Z
(WebDAV)
CM policy Z
(WebDAV)CM policy Y

(change set)
CM policy Y
(change set)

Key Observation:
Separation of CM Repository from CM Policy

Current monolithic, 
centralized CM systems

Current monolithic, 
centralized CM systems

Generic and distributed 
CM repository

CM policy X
(checkout/checkin)
CM policy X
(checkout/checkin)

CM system =
     CM repository +
     CM policy

CM repository =
     repository model +
     programmatic interface

CM Repository

✦ store for versions of
software artifacts and
information about these
artifacts

✦ knows about versions

✦ supports distribution

CM Repository versus CM Policy

CM Policy

✦ specific procedures for
creating, evolving, and
assembling versions of
artifacts

✦ maintains relationships
among versions

✦ places artifacts in specific
locations

Repository Model

✦ Five submodels are defined
• storage model

• distribution model

• naming model

• access model

• attribute model

✦ Others could be added
• security model



Basic Storage Model

WordProcessor DrawingEditor

SpellChecker

FileReader.c

GUI-lib Graphics

Windows.c Frame.c PullDown.c PushUp.c

Menu

Versioning in the Storage Model

11

11

11
11

22
3311 22 11

22

11
22

3311

2211

WordProcessor DrawingEditor

SpellChecker

FileReader.c

GUI-lib Graphics

Windows.c Frame.c PullDown.c PushUp.c

Menu SmartMenu

Distribution Model

11

11

11
11

22
33

11

22

11

22
11

22
33

2211

WordProcessor DrawingEditor

FileReader.c

GUI-lib
Graphics

Windows.c Frame.c

PullDown.c PushUp.c

Menu SmartMenu

Rotterdam

Milano

Boulder
11

SpellChecker

Naming Model

✦ Versioned path name

✦ Crosses distribution boundaries

✦ Examples
• //Boulder/WordProcessor/SpellChecker/FileReader.c

• //Boulder/WordProcessor/GUI-lib/Frame.c

• //Milano/DrawingEditor/Graphics:3/Frame.c

• //Milano/DrawingEditor:1/SmartMenu:2/PullDown.c:2



Examples

11

11

11
11

22
33

11

22

11

22
11

22
33

2211

WordProcessor DrawingEditor

FileReader.c

GUI-lib
Graphics

Windows.c Frame.c

PullDown.c PushUp.c

Menu SmartMenu

Rotterdam

Milano

Boulder
11

SpellChecker

Access Model

User view

CM workspace

CM repository

workspace materialization

transformation by CM policy

user manipulation

…/WordProcessor/SpellChecker/FileReader.c
                              /GUI-lib/Window.c
                                            /Frame.c

User manipulation

Transformation by CM policy

Workspace materialization

User view

CM workspace

CM repository

Attribute Model

11
Revision = 1.0
Author = Andre
Change comment = initial version

22
Revision = 1.1
Author = Antonio
Change comment = adapted to HP

33
Revision = 1.2
Author = Andre
Lock = andre@cs.colorado.edu

Programmatic Interface

Collection
•add
•remove
•rename
•replaceVersion
•copy
•list

Query
•getType
•version
•lastVersion
•existsVersion
•isInitiated
•isOpen

Access
•open
•close

Deletion
•destroyVersion

Attribute
•testAndSet
•set
•get
•remove
•selectVersions

Distribution
•setmyServer
•getLocation
•move

Versioning
•initiateChange
•abortChange
•commitChange
•commitChange-
AndReplace



Example

11
22

33 11

11
22

Windows.c Frame.c

GUI-lib

…/GUI-lib/Windows.c
                  /Frame.c

1. nc_open(GUI-lib)
2. nc_open(GUI-lib/Windows.c)
3. nc_open(GUI-lib/Frame.c)
4. nc_initiatechange(GUI-lib)
5. nc_initiatechange(GUI-lib/Frame.c)

11
22

Example (continued)

11
22

33

11
22

Windows.c Frame.c

GUI-lib

…/GUI-lib/Windows.c
                  /Frame.c

6. nc_commitChange(GUI-lib/Frame.c)

11
22

Example (continued)

11
22

33

…/GUI-lib/Windows.c
                  /Frame.c

7. nc_replaceVersion(GUI-lib, Frame.c, 2)
8. nc_commitChange(GUI-lib)

11

GUI-lib

Frame.c

22
33

Windows.c

Key Principles underlying the Abstraction Layer

✦ Policy independent

✦ Simple yet precise

✦ Inherently distributed

✦ Orthogonal
• isolation of distribution



Roadmap

✦ Abstraction Layer

✦ Evaluation
• expressiveness

• feasibility

• utility & validity

✦ Conclusions

Expressiveness

✦ Versioning aspects of existing CM policies
• checkout/checkin, composition, long transaction,

change set

✦ Distribution aspects of existing CM policies
• client-server workspaces, peer-to-peer repositories,

distributed long transaction, repository replication

✦ Non-traditional CM policies
• movement upon checkout, product family

architectures

Checkout/Checkin Policy

✦ Pattern
• check out an artifact version into a workspace

• manipulate its contents in the workspace

• check in the new contents to a repository as a new
revision or new variant

✦ Individual artifacts

✦ Revisions and variants form a version tree

✦ Checked out artifacts are locked

Repository Design

1111

11

Trees

Windows.c Frame.c

11
22

11
22

33

11

Windows.c Frame.c

Artifacts

11 CoCiVersion = 1.0

22
CoCiVersion = 1.1
Label = REL1.0B

33
CoCiVersion = 1.1.1.0
Lock = John@doe.net

11

1.0-pred = {}
1.0-suc = {1.1, 1.1.1.0}
1.1-pred = {1.0}
1.1-suc = {}
1.1.1.0-pred = {1.0}
1.1.1.0-suc = {1.0}



Core Policy Design

proc lock { artifact user } {
if { [nc_testandsetattribute $artifact “Lock” $user] == “false” } {

set lockuser [nc_getattributevalue $artifact “Lock”]
puts “$artifact is locked by user $lockuser”
exit

}
}
proc checkout { workspace content version } {

set user $env(USER)
set host $env(REPOSITORYHOME)
set artifact “//$host/Artifacts/$content”
set filename [file tail $content]
set wsartifact “$workspace/$filename”
set storageversion [lindex [nc_selectversions $artifact “PolicyVersion” $version] 0]
set artifact “$artifact:$storageversion”
lock $artifact $user
nc_open $artifact $workspace
nc_initiatechange $wsartifact

}

Peer-to-Peer Repositories Policy

✦ Pattern
• checkout/checkin

✦ Manages compound artifacts

✦ Each artifact can be stored in a different location
• cross-repository membership

Repository Design

artifacts trees

artifacts trees

artifacts trees

BOULDER

MILANO

ROTTERDAM

Core Policy Design

proc createfederation { myhost collection itshost theartifact } {
set user $env(USER)
set workspace “/tmp/workws”
set filename [file tail $collection]
set artifact “//myhost/Artifacts/$collection”
set wsartifact “$workspace/$filename”

lock $artifact $user

nc_open $artifact $workspace
nc_initiatechange $wsartifact
nc_add //$itshost/theartifact
nc_commitchange $wsartifact
nc_close $wsartifact
nc_removeattribute $artifact “Lock”

}



Movement upon Checkout Policy

✦ Pattern
• peer-to-peer repositories

✦ Artifacts move from physical repository to
physical repository
• move is triggered by checkout

Repository Design

artifacts trees

artifacts trees

artifacts trees

BOULDER

MILANO

ROTTERDAM

proc movingcheckout { workspace content version } {
set user $env(USER)
set host $env(REPOSITORYHOME)
set artifact “//$host/Artifacts/$content”
set tree “//$host/Trees/$content”
set filename [file tail $content]
set wsartifact “$workspace/$filename”
set storageversion [lindex [nc_selectversions $artifact “PolicyVersion” $version] 0]
set artifact “$artifact:$storageversion”
set locked [nc_testandsetattribute $artifact “Lock” $user]

lock $artifact $user

nc_open $artifact $workspace
nc_initiatechange $wsartifact
nc_move $artifact $host
nc_move $tree $host

}

Core Policy Design Feasibility

✦ Abstraction layer is implemented and in use
• NUCM (Network-Unified Configuration

Management)

✦ Internal separation of concerns
• incremental layering

• low impact of changes to models & interface classes

✦ Limitations in functionality
• no caching, compression, or delta storage



High-Level Architecture

Physical
repository
Physical

repository

Physical
repository
Physical

repository

Physical
repository
Physical

repository

Access
server

Access
server

Access
server

Access
server

Access
server

Access
server

Logical
repository

NUCM client
CM policy y

NUCM client
CM policy x

NUCM client
CM policy x

NUCM client
CM policy x

Utility & Validity

✦ Three novel prototype CM systems
• DVS -- distributed, collaborative document

authoring

• SRM -- distributed, coordinated software release
management

• WebDAV -- standard extension to HTTP for
distributed authoring and versioning

✦ Little effort required in the implementation

✦ Rapid experimentation with CM policies

DVS Goal

✦ Support asynchronous collaborative document
authoring
• centered around workspaces and locking

• assumes linear evolution of artifacts

✦ Seamless support for distribution

CM policy:
peer-to-peer repositories with (modified) composition

DVS Experience

✦ In use for over two years
• grant proposals (CU, UCI, Northrup, Aerospace)

• daily paper writing (Colorado, Italy, disconnected)

✦ No code was written to deal with distribution
• relies entirely on NUCM

✦ Only 3,000 lines of source code

✦ Policy has been adjusted while in use



SRM Goal

✦ Simplify release process
• multiple versions

• dependency specification

• multiple release repositories

✦ Simplify retrieval process
• deliver a system and its dependencies

• transparent distribution

CM policy:
linear versioning with controlled peer-to-peer repositories

SRM Experience

✦ In use for over three years
• DARPA EDCS program

• CU Software Engineering Research Laboratory

✦ Retrieved over 350 times
• Boeing, Raytheon, AT&T, Dallas Cowboys, …

✦ NUCM-oriented code: about 10 percent

✦ Distribution-oriented code: about 2 percent
• join and leave

WebDAV Goal

✦ Extend HTTP protocol
• metadata

• collections

• name space management

• locking

• version management

CM policy:
checkout/checkin with client-server workspaces

WebDAV Experience

✦ Limited to being a partial prototype

✦ Rapid implementation
• 4 hours for checkout/checkin policy

• one week total, including UI development

✦ Core of the checkout/checkin policy is a reuse
of an earlier, unrelated prototype

✦ Shows potential for rapid prototyping



Additional, Unexpected Characteristics

✦ Evolution
• CM policies can be changed relatively easy

• limited impact on repository design from changes
to policies

✦ Reuse
• CM policies incorporate parts of repository and

core policy designs from other CM policies

Both need to be further investigated!

Evaluation Summary

✦ Expressiveness
• many different CM policies

• many different distribution policies

• wide variety of different kinds of artifacts

✦ Feasibility
• actual implementation that is in use

✦ Utility
• actual (prototype) CM systems that are in use

Evaluation Summary (continued)

✦ Validity
• rapid construction of prototype CM systems

• rapid experimentation with CM policies

• inherent distributed operation

✦ Additional, unexpected characteristics
• evolution of CM prototypes build with NUCM

• incremental nature of CM policies

Roadmap

✦ Abstraction layer

✦ Evaluation

✦ Conclusions
• related work

• contributions

• limitations

• research impact

• future work



Related Work -- Architectural Evolution

Complete
CM system

implementation

CM policy
implementation

via
CM-specific API

CM-specific
distributed
repository

CM policy
implementation

via
generic API

Generic
database

Evolution over time

Perforce, RCS, SCCS
SourceSafe, etc.

ClearCase, Continuus,
TrueCHANGE, etc.

NUCM, CME, CoMa,
Gradient, ScmEngine

Related Work -- Alternative Platforms

✦ CME (Xcc Software, 1997)
• limited to composition policy; not distributed

✦ CoMa (Westfechtel, 1996)
• limited to composition policy; not distributed

✦ Gradient (AT&T Bell Laboratories, 1996)
• limited to checkout/checkin policy; replicated

repositories

✦ ScmEngine (Ci et al., 1997)
• limited to distributed checkout/checkin policy

Related Work -- Other Domains

✦ Groupware
• collaborative workspaces, not isolated workspaces

• very different issues, especially in a distributed
setting

✦ Versioned databases
• focus on generality, not on a specific domain

• abstraction layer can be viewed as a specific
schema with a number of standard views

Contribution

✦ Abstraction layer that provides a reusable
testbed for CM policy programming
• model of a generic CM repository

• programmatic interface

✦ Intended to lead to...
• ...new design methods for CM systems

• ...complete platform for constructing CM systems



Limitations

✦ Abstraction layer
• inefficient in managing fine-grained artifacts

• at times leads to heavy-weight solutions

✦ Implementation
• currently not scaleable

• currently not reliable

Research Impact

✦ NUCM has been downloaded over 250 times
• many CM organizations

✦ Circumstantial evidence
• Perforce -- old distribution model

• TrueCHANGE -- release management

• WebDAV -- collection mechanism

Future Work

✦ Can we futher raise the level of abstraction?
• high-level CM policy programming language

✦ Can we broaden the functionality of the testbed?
• include merge, build, and process interfaces

✦ Can we apply the testbed to other domains?
• groupware

✦ Can we improve the functionality without
changing the external interface?
• smart caching, compression, delta storage


