
Lecture 16:
Data Flow and Dependence Graphs

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

March 9, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• White-Box Testing
– Data Flow Graphs

• Minimum Retesting
– Program Dependence Graphs

• Control Dependence Graphs

• Data Dependence Graphs

March 9, 2000 © Kenneth M. Anderson, 2000 3

Flow Graphs

• Control Flow
 The partial order of statement execution, as

defined by the semantics of the language

• Data Flow
 The flow of values from definitions of a

variable to its uses

Graph representation of control flow and
 data flow relationships

March 9, 2000 © Kenneth M. Anderson, 2000 4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;
if (Y < 20 and then X mod 2 = 0) then

Y := Y + 20;
else

Y := Y – 20;
end if;
return 2 ∗ X + Y;

end P;

A Sample Ada Program to Test

March 9, 2000 © Kenneth M. Anderson, 2000 5

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

T
F

P’s Control Flow Graph (CFG)

March 9, 2000 © Kenneth M. Anderson, 2000 6

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

T
F

P’s CFG with a Data Flow Edge

X

March 9, 2000 © Kenneth M. Anderson, 2000 7

P’s Control/Data Flow Graph

2,3,4 5

6

9′

10

12

14

T

F

9
T

F
Y

X

X

Y

Y X

X

Y

YX
X

X

T
F

7

T
F X

X

March 9, 2000 © Kenneth M. Anderson, 2000 8

White-box Testing Criteria

• Use Coverage
 Select a test set T such that, by executing P for

each d in T, all paths leading from each
definition of a variable to each use of that
variable in P’s control/data flow graph are
traversed at least once

March 9, 2000 © Kenneth M. Anderson, 2000 9

P’s Control/Data Flow Graph

2,3,4 5

6

9′

10

12

14

T

F

9
T

F
Y

X

X

Y

Y X

X

Y

YX
X

X

T
F

7

T
F X

X

How many test cases are needed? March 9, 2000 © Kenneth M. Anderson, 2000 10

Minimizing Retesting

• Test Only What Is Affected by a Change

• Key: Dependency Analysis
 Also used for optimization, parallelization, …

• At Coarse Level, Module Relationships
 Uses, calls, imports, includes, …

• At Fine Level, Control and Data Flow
 Program dependence graphs

March 9, 2000 © Kenneth M. Anderson, 2000 11

Program Dependence Graph (PDG)

• Summary Representation of “Dependence”

• Nodes Are Either Statements or Predicates
or the Special Node “Entry’’

• Two Kinds of Edges
– Control dependence edge

– Data dependence edge

• Two Subgraphs Induced by the Edges

March 9, 2000 © Kenneth M. Anderson, 2000 12

Control Dependence Graph (CDG)

• Informal Definition
– For nodes X and Y in a CFG, Y is control

dependent on X if, during execution, X can
directly affect whether Y is executed

March 9, 2000 © Kenneth M. Anderson, 2000 13

Control Dependence Graph (CDG)

• Formal Definition
– Let X and Y be nodes in a CFG. If Y appears on every

path from X to the exit node, where Y != X, then Y
post-dominates X.

– There is a control dependence from X to Y with label L
iff:

• there is a non-null path p from X to Y, starting with edge L,
such that Y post-dominates every node strictly between X and
Y on p; and

• Y does not post-dominate X.

March 9, 2000 © Kenneth M. Anderson, 2000 14

P’s Control Dependence Graph

2,3,4 5

6

9′

1012

14

T T
F

9 T

7

T F

1

T

F

March 9, 2000 © Kenneth M. Anderson, 2000 15

P’s Control Dependence Graph

2,3,4 5

6

9′

1012

14

T T
F

9 T

7

T F

1

T

F

March 9, 2000 © Kenneth M. Anderson, 2000 16

P’s Control Dependence Graph

2,3,4 5

6

9′

1012

14

T T
F

9 T

7

T F

1

T

F

March 9, 2000 © Kenneth M. Anderson, 2000 17

Data Dependence Graph (DDG)

• Informal Definition
– Two statements are data dependent if they

might reference the same memory location and
one of the references is an assignment to the
memory location

March 9, 2000 © Kenneth M. Anderson, 2000 18

Data Dependence Graph (DDG)

• Informal Definition
– Two statements are data dependent if they

might reference the same memory location and
one of the references is an assignment to the
memory location

– Intuition: If the statements cannot be switched
without affecting the program, then they are
data dependent

March 9, 2000 © Kenneth M. Anderson, 2000 19

Data Dependence Graph (DDG)

• Formal Definition
– Let X and Y be nodes in a CFG. There is a data

dependence from X to Y with respect to a
variable v iff there is a non-null path p from X
to Y with no intervening definition of v and
either:

• X contains a definition of v and Y a use of v;

• X contains a use of v and Y a definition of v; or

• X contains a definition of v and Y a definition of v.

March 9, 2000 © Kenneth M. Anderson, 2000 20

P’s Data Dependence
Graph for X

2,3,4 5

6

9′

1012

149

7

1

March 9, 2000 © Kenneth M. Anderson, 2000 21

P’s PDG (DDG for X Only)

2,3,4 5

6

9′

1012

14

T T
F

9 T

7

T F

1

T

F

March 9, 2000 © Kenneth M. Anderson, 2000 22

P’s PDG (DDG for X Only)

2,3,4 5

6

9′

1012

14

T T
F

9 T

7

T F

1

T

F

March 9, 2000 © Kenneth M. Anderson, 2000 23

P’s PDG (DDG for X Only)

2,3,4 5

6

9′

1012

14

T T
F

9 T

7

T F

1

T

F

March 9, 2000 © Kenneth M. Anderson, 2000 24

Minimum Regression Testing

 Given program P, its modified version P′,
and test set T used to test P, find a way,
making use of T, to test P′

– Identify changes to P resulting in P′
– Select T′, a subset of T, related to changes

– Run T′ on P′

March 9, 2000 © Kenneth M. Anderson, 2000 25

Goals

• Safety
 Every relevant test from T must be selected

• Precision
 Select only tests that exhibit different behavior

• Efficiency
 Cheap to calculate and run T′

March 9, 2000 © Kenneth M. Anderson, 2000 26

Modifications

• Adding Statements

• Deleting Statements

• Changing Statements

• Theorem
 Need only tests in T that can traverse different

regions of statements in P and P′, where regions
are dependent-equivalent sub-CDGs

March 9, 2000 © Kenneth M. Anderson, 2000 27

Test Selection Algorithm

procedure SelectTests

 Construct CDGs of P and P’, with entry nodes E1, E2

 T’ = Compare (E1, E2)

procedure Compare (N1,N2)

 mark N1 and N2 visited

 if (children of N1 and N2 differ) then

 return all tests that traverse N1

 else

 T’ = NULL

 for each region or predicate child C1 of N not yet visited do

 find C2, the corresponding child of N2

 T’ = T’ union Compare (C1,C2)

