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The Roadmap

= Introduction to Dependence Analysis

¢ Current State of Affairs and Limitations

+ Judy’s Approach -- A Compositional Model
+ Related Work
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My Big Program Doesn’t Work
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But Where To Look?
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Simple Bug Tracking Example

¢ Question: What statements
of Simple could contain the
bug that causes it to always
print “1”?
— Answer: 1,2,0r4
— How do we find the answer?
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Program Simple

1:read i

2:if (i==1)

3: print “POS.”
else

4: i=1

S5:printi

6:end
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Getting Started

¢ Best to start your search
where the bad value is
printed -- statement 5

¢ It looks like the value used
at statement 5 comes from
statement 4
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Program Simple

1:read i

2:if (i==1)

3: print “POS:”
else

4 i=1

S:print i

6:end
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Conditional Execution

¢ But then you notice that
statement 4 might not
even be executed because
it depends on the decision
made at statement 2
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Program Simple

1:read i

2:if(i==1)

3: print “POS.”
else

4: i=1

5:print i

6: end
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Variable Assignment

The Answer
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Program
Dependence
Information
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¢ The decision made at Program Simple ¢ So only statements 1, 2, Program Simple
statement 2 depends on 1-read i and 4 could contain the 1-read i
what value is input at 2:if (i==1) bug... 2:if (i==1)
statement 1 3: print “POS:” % This is helpful 3: print “POS:”
& The value printed at 5 else else
may come directly from 4: i=1 4: i=1
statement 1 5:print i 5: print i
6:end 6: end
The Big Question A Graph-Based Model
Program Code
Program Simple
1: regad i P How do we automatically ¢ _
o if (i==1) identify dependencies Cog‘;‘ ':]'OW — FO”NardT[r):em'”ance
3: orint “POS:” in REAL program code? P
else i
4: i=1 89 :
5:print i ‘ l
6:end i}
Data Dependence Control Dependence

Graph Graph

\A‘/_/

Program Dependence
Graph
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A Graph-Based Model

Program Code

'

Control Flow Forward Dominance
>
Graph Tree

1
1
1
Data Dependence Control Dependence
Graph Graph

\A‘/_/

Program Dependence
Graph
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A Control Dependence Representation

¢ Represent control dependencies in a control dependence

graph, “CDG”

Program Simple

1:read i

2:if (i==1)

3: print “POS””
else

4: i=1

5: print i

6:end
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« Vertices represent executable statements
« Arcs represent direct control dependence
« A distinguished entry vertex representing

the start of the program

CDG
entry
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A Control Dependence Representation

¢ [f statement X determines whether statement Y is
executed, statement Y is control dependent on
statement X

Program Simple
1:read i

X [»2:if (i ==1) CDG  entry
Y —»3:[ print “POS:”
else 1 |5 —6
4: i=1 3 4

S:printi
6:end
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A Control Dependence Representation

¢ [f statement X determines whether statement Y is
executed, statement Y is control dependent on

statement X

Program Simple

1:read i

X-—»2:if(i==1)

3: print “POS.”
else

Y40 0=1

S:printi

6:end
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A Control Dependence Representation

+ Statements that are guaranteed to execute are control
dependent on entry to the program

Program Simple

1.read i

2:if (i==

3: print “POS.”
e|se 1 2 5 6

4: =1 3 4

S:print i

6:end
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A Graph-Based Model

Program Code

v

Control Flow Forward Dominance
Graph Tree

Data Dependence Control Dependence
Graph Graph

\Ab/_/

Program Dependence
Graph
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A Graph Representation of Behavior

& The control flow graph, “CFG”

« Vertices represent executable statements

Program Slmple . ;(’-\)rr::z :;rrye::tc:)rzeen):ilgl control flow
1:read i 1
2:if(i==1)
3: print “POS:” 2
else 3 4
4: i=1
5: print i 5
6: end 6
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Calculating Control Dependencies
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How can we use

CFG
1 CFGsto
5 generate CDGs?
3 4
>
> S~ cDG
6 Q& entry
1 2 5 6
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Calculating Control Dependencies

The control dependents
come after a decision and
before a junction...
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Calculating Control Dependencies

+ Use the dominance tree (in reverse)!

Forward
CFG . Dominance
1 Tree
2
3 4
5
6 CDG
entry
1 2 5 6
3 4
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A Graph-Based Model

Program Code
I

v
Control Flow Forward Dominance
Graph Tree

1
1
1
Data Dependence Control Dependence
Graph Graph

~— ——

Program Dependence
Graph
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FO rwa rd D O m I n a n Ce (a.k.a. post dominance, inverse dominance)

¢ The forward dominance tree, “FDT”

« Vertices represent executable statements

: « Arcs represent immediate forward

Program Simple dominance
1:readi « The root of the tree is the exit of the CFG
2:if (i ==1)
3: print “POS:” FDT

else 6
4: i=1 5
5: print i 2 3 4
6: end ]
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FO rwa rd DO m I n a n Ce (a.k.a. post dominance, inverse dominance)

o Y forward dominates X if all paths from X include Y

Program Simple

1:read i

2:if (i==1)

3:  print “POS:”
else

4: i=1

5: print i

6: end

first forward
dominator

Notice that the control dependents,
3 and 4, don’t forward dominate 2
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Forward Dominance Tree

¢ The first forward dominator of X is called the immediate
forward dominator of X, “ifdom(X)”

+ Vertices between X and ifdom(X) are dependent on X
¢ Immediate forward dominators form a tree, “FDT”

Program Simple CFG FDT

1:read i 1 6

2:if(i=1) X > 2 5

3:  print “POS:” 3 4 2 » 53 4
else

4: i=1 Y s OO 5 ifdom(2) = 5

5: print i 6

6: end
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A Graph-Based Definition

¢ Y is control dependent on X < there is a path in the CFG
from X to Y that doesn’t contain the immediate forward

dominator of X
1 X 6 E
X > 2 J 5 1 2 5 6
3 4 2 » O3 4 3o *Dy
Y
5 ifdom(2) = 5 4CD2
6
CFG + FDT = CDG
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How Does This Help?

¢ Now we have half of the answer

cbe entry Program Simple
1:read i
1 29556 2:if (i==1)
3 4 3: print “POS:”
t else
. 4:1 =1
“But. then you notice that statement 5: print i
4 might not even be executed
because it depends on the decision 6: end

made at statement 2”
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A Graph-Based Model

Program Code

Data Depende
Graph

Program Dependence
Graph
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Real Programs are More Complex

o CFG-based definitions and algorithms expect a
connected graph

¢ Procedure-level control flow
graphs are not connected
because there is no direct flow
from a call to the next statement

A

RM: Return

©2000 Judith A. Stafford University of Colorado at Boulder @ERL

The Roadmap

v Introduction to Dependence Analysis

= Current State of Affairs and Limitations

+ Judy’s Approach -- A Compositional Model
¢ Related Work
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Other Models

Uni-Procedure Model Multi-Procedure Approaches

Program

v
CFG — FDT

S—o—

CDG

LIMITED
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Other Models
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Uni-Procedure Model Multi-Procedure Approaches

In-lined Approach

Program Program
v ’//\{
CFG = FDT
\0/_/ Proc A oo Proc Z

A

CFG CFG CFG CFG CFG

N‘/_/

IICFG &> FDT

v

SCDG

LIMITED IMPRACTICAL
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Other Models

Uni-Procedure Model Multi-Procedure Approaches
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In-lined Approach 1-1 Graph Approach

Program Program Program
M ,//\. »f/\q
CFG - FDT
\0/_/ Proc A o Proc Z Proc A cee Proc Z
cDG ,/% ,/\ i i
CFG CFG CFG CFG CFG CFG CFG
IICFG +» FDT ICFG
SCDG SCDG
LIMITED IMPRACTICAL AD HOC
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The Roadmap
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v Introduction to Dependence Analysis

v Current State of Affairs and Limitations
= My Approach -- A Compositional Model
+ Related Work
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Guiding Principles

©2000 Judith A. Stafford

¢ Question...

— Can | extend the forward dominator relation to create a practical
and straight-forward model of control dependencies that addresses
the pitfalls?

¢ Approach
— Compositional
» Reason about properties of procedures independently
» Compose procedure-based representations to reflect program-wide
properties
— Language-independent
» Modern programs are composed of parts written in different languages
— Generalizable
» Limitations and power are precisely defined
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A New View - A Compositional Model

Program
/ /\
Proc A Proc B . Proc Z
v v v
PCFG » FDF PCFG » FDF PCFG » FDF Call
\”,/ \0,/ \0// Graph
PCDG PCDG PCDG

Composed System Control
Dependence Graph
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Procedure-level Structures

¢ Keep track of the Procedure
ial indi control flow N
potential indirect flows oraph | interrupted-

and forward dominances flow arc

RM: Return

Forward
Dominance

Forest =
U Procedure Control

Dependence Graph

51

2 3

gci}_ <+
4 RM
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A

— p-fdom arc

Vertices
after a call
depend
upon return

G P ®)
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A Graph Representation of Structure

o The call graph

Program Multi « Vertices represent procedures in a program
« Arcs represent procedure call
« Arcs are annotated with ID of each call site

1. Proc M

2. callB

3:i=i+1 M

4: return 2)

1: ProcB B

2: return
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Program-level Structures

¢ Apply program call graph to Program Call Graph |

resolve p-fdom arcs and

identify interprocedural

dependencies call arc labeled <—— 2)
with call site
vertex id roc

Compound Control

@ @ Dependence = EnP o o ExP
D ® < Program ‘
Forw.ard Procedure B
(3) (5) Dominance  and forward
D Forest dominators of 2
2 N inherit control
resolve p-fdom arc dependence 5
a into fdom arc from 2 %% ipcd arc
6 RB
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Example -- Program Sum

4: while i <10 do N
(5:call B

10: call C I

11 :if j >= 0 then

13: read j

RB: Return

16: proc C

17: if sum > 100 then
. 18: print “done”
19 return D

RC: Return

— control flow
» _interrupted-flow
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Forward Dominator Forest

v

procedure’s entry vertex

Resolve p-fdom arcs after checking to see if the return
vertex of the called procedure forward dominates the

— ifdom arc
“““ » p-fdom arc
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Control Dependencies in Program Sum

+ Call Graph for
Program Sum

Procedure inherits
control dependence of
call
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¢ Sum’s Compound Control Dependence

Graph

EnSum o>—= ExSum
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Introducing an Embedded Halt

7: print sum

4: while i <10 do I
6:callB I

10: call C I

RB: Return

16: proc C
17: if sum > 100 then

—1 9: return

18: HALT

— control flow
» _interrupted-flow

©2000 Judith A. Stafford
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Forward Dominator Forest -- with EHalt

V/

Resolve p-fdom arcs after checking to see if the return
vertex of the called procedure forward dominates the
procedure’s entry vertex.

— ifdom arc
“““ » p-fdom arc
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Effect of Halt on Control Dependence

¢ Call Graph for
Program Sum

Procedure inherits

¢ Sum’s Compound Control Dependence

Graph

control dependence of

call/return sites
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EnSum o—= ExSum

M
B 9
10 11
12 13 14 &> 15 ©RB
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Related Work

¢ Researchers have extended the CFG and generate the
CDG in ad hoc ways to apply to complex programs

CFG + FDT = CDG

xFG

xFG
xFG
xFG

xFG
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~~\\WN\» xCDG

M\ xCDG
M\ xCDG
M\ xCDG

W\ xCDG

Uni-procedure
Multi-procedure

Object-oriented
Concurrent

Concurrent-O0O

Reactive

Podgurski+'90
Ferrante+'87

Horwitz+'90, Loyall+'93
Harrold+98,99,Liao+'99

Larsen+'96
Zhao+'96

Zhao+'96

Hatcliff+'99,
Zhao+'99

Clarke+'99,
Stafford+'98
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