Lecture 15
Control Dependence Graphs

A Compositional Approach to
Interprocedural Control Dependence
Analysis

Kenneth M. Anderson
CSCI 5828, Spring 2000
This lecture comes from...

Judith Stafford

Software Engineering Research Laboratory
Department of Computer Science
University of Colorado at Boulder

http://www.cs.colorado.edu/serl

The Roadmap

= Introduction to Dependence Analysis

¢ Current State of Affairs and Limitations

+ Judy’s Approach -- A Compositional Model
+ Related Work

©2000 Judith A. Stafford University of Colorado at Boulder @ERL

My Big Program Doesn’t Work

©2000 Judith A. Stafford

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxx
ooooooooo

ooooooo
xxxxxx
xxxxxx

Why is the printed
VALUE wrong?

ooooooooooooo

xxxxxx

xxxxxxxxx

xxxxxxxx

xxxxx

University of Colorado at Boulder $ERL

But Where To Look?

XOXOXOXOXOXOXOXOXO
XOXOXOX00X
XOXOXOXOXOXOXOXOXO XOXOXO
XOXOXOX00X
X0X0X0

| wish | knew where to
concentrate my search.

XOXOX XOXOX
——
XOXOX0 XOXOXOX00X
XOXOX000X Xxoxoxo
X0X0X00 XOXOX000X
Xxoxoxo XOX0X00
xoxoxo XOXOXO0
XOX0X0XOX XOXOXO
Xoxoxox XOXOXOXOX
xoxoxo XOXOXOX
XOXOXXX000XOX XOXOXO
X0X0X0X0
XOXO XOXOXXX000X0X
xox0x XOXOXOXO
x0x0
XOXOX

©2000 Judith A. Stafford

XOXOXOXOXOXOXOXOXO
XOXOX0X00X
X0Xoxo
XOXOX000X

XOX0X00
XOX0X0
X0X0X0
X0xo
Xoxo
X0X

XOXOXOX
XOXOXOXOXXOXOXOXOX
XOXXOXOXOXO
XOX0X0
XOXOXXX000XOX

XOXOX0X0
XOXXOXOXOXO

g

XOX0X00

XOX0X0
XOX0X0
XOXOXOXOX
XOXOXOX
XOX0X0
XOXOXXX000XO0X

XOXOXO0X0

University of Colorado at Boulder @ERL

Simple Bug Tracking Example

¢ Question: What statements
of Simple could contain the
bug that causes it to always
print “1”?
— Answer: 1,2,0r4
— How do we find the answer?

©2000 Judith A. Stafford

Program Simple

1:read i

2:if (i==1)

3: print “POS.”
else

4: i=1

S5:printi

6:end

University of Colorado at Boulder @ERL

Getting Started

¢ Best to start your search
where the bad value is
printed -- statement 5

¢ It looks like the value used
at statement 5 comes from
statement 4

©2000 Judith A. Stafford

Program Simple

1:read i

2:if (i==1)

3: print “POS:”
else

4 i=1

S:print i

6:end

University of Colorado at Boulder @ERL

Conditional Execution

¢ But then you notice that
statement 4 might not
even be executed because
it depends on the decision
made at statement 2

©2000 Judith A. Stafford

Program Simple

1:read i

2:if(i==1)

3: print “POS.”
else

4: i=1

5:print i

6: end

University of Colorado at Boulder @ERL

Variable Assignment

The Answer

©2000 Judith A. Stafford

Program
Dependence
Information

University of Colorado at Boulder @ERL

©2000 Judith A. Stafford

¢ The decision made at Program Simple ¢ So only statements 1, 2, Program Simple
statement 2 depends on 1-read i and 4 could contain the 1-read i
what value is input at 2:if (i==1) bug... 2:if (i==1)
statement 1 3: print “POS:” % This is helpful 3: print “POS:”
& The value printed at 5 else else
may come directly from 4: i=1 4: i=1
statement 1 5:print i 5: print i
6:end 6: end
The Big Question A Graph-Based Model
Program Code
Program Simple
1: regad i P How do we automatically ¢ _
o if (i==1) identify dependencies Cog‘;‘ ':]'OW — FO”NardT[r):em'”ance
3: orint “POS:” in REAL program code? P
else i
4: i=1 89 :
5:print i ‘ l
6:end i}
Data Dependence Control Dependence

Graph Graph

\A‘/_/

Program Dependence
Graph

University of Colorado at Boulder @ERL

©2000 Judith A. Stafford

A Graph-Based Model

Program Code

'

Control Flow Forward Dominance
>
Graph Tree

1
1
1
Data Dependence Control Dependence
Graph Graph

\A‘/_/

Program Dependence
Graph

University of Colorado at Boulder @ERL

A Control Dependence Representation

¢ Represent control dependencies in a control dependence

graph, “CDG”

Program Simple

1:read i

2:if (i==1)

3: print “POS””
else

4: i=1

5: print i

6:end

©2000 Judith A. Stafford

« Vertices represent executable statements
« Arcs represent direct control dependence
« A distinguished entry vertex representing

the start of the program

CDG
entry

University of Colorado at Boulder @ERL

A Control Dependence Representation

¢ [f statement X determines whether statement Y is
executed, statement Y is control dependent on
statement X

Program Simple
1:read i

X [»2:if (i ==1) CDG entry
Y —»3:[print “POS:”
else 1 |5 —6
4: i=1 3 4

S:printi
6:end

©2000 Judith A. Stafford University of Colorado at Boulder @EFL

A Control Dependence Representation

¢ [f statement X determines whether statement Y is
executed, statement Y is control dependent on

statement X

Program Simple

1:read i

X-—»2:if(i==1)

3: print “POS.”
else

Y40 0=1

S:printi

6:end

©2000 Judith A. Stafford

University of Colorado at Boulder @ERL

A Control Dependence Representation

+ Statements that are guaranteed to execute are control
dependent on entry to the program

Program Simple

1.read i

2:if (i==

3: print “POS.”
e|se 1 2 5 6

4: =1 3 4

S:print i

6:end

©2000 Judith A. Stafford University of Colorado at Boulder SERL

©2000 Judith A. Stafford

A Graph-Based Model

Program Code

v

Control Flow Forward Dominance
Graph Tree

Data Dependence Control Dependence
Graph Graph

\Ab/_/

Program Dependence
Graph

University of Colorado at Boulder @ERL

A Graph Representation of Behavior

& The control flow graph, “CFG”

« Vertices represent executable statements

Program Slmple . ;(’-\)rr::z :;rrye::tc:)rzeen):ilgl control flow
1:read i 1
2:if(i==1)
3: print “POS:” 2
else 3 4
4: i=1
5: print i 5
6: end 6

©2000 Judith A. Stafford University of Colorado at Boulder @EFL

Calculating Control Dependencies

©2000 Judith A. Stafford

How can we use

CFG
1 CFGsto
5 generate CDGs?
3 4
>
> S~ cDG
6 Q& entry
1 2 5 6

University of Colorado at Boulder @ERL

Calculating Control Dependencies

The control dependents
come after a decision and
before a junction...

©2000 Judith A. Stafford University of Colorado at Boulder SERL

Calculating Control Dependencies

+ Use the dominance tree (in reverse)!

Forward
CFG . Dominance
1 Tree
2
3 4
5
6 CDG
entry
1 2 5 6
3 4

©2000 Judith A. Stafford University of Colorado at Boulder SERL

A Graph-Based Model

Program Code
I

v
Control Flow Forward Dominance
Graph Tree

1
1
1
Data Dependence Control Dependence
Graph Graph

~— ——

Program Dependence
Graph

©2000 Judith A. Stafford University of Colorado at Boulder @EFL

©2000 Judith A. Stafford

FO rwa rd D O m I n a n Ce (a.k.a. post dominance, inverse dominance)

¢ The forward dominance tree, “FDT”

« Vertices represent executable statements

: « Arcs represent immediate forward

Program Simple dominance
1:readi « The root of the tree is the exit of the CFG
2:if (i ==1)
3: print “POS:” FDT

else 6
4: i=1 5
5: print i 2 3 4
6: end]

University of Colorado at Boulder @ERL

FO rwa rd DO m I n a n Ce (a.k.a. post dominance, inverse dominance)

o Y forward dominates X if all paths from X include Y

Program Simple

1:read i

2:if (i==1)

3: print “POS:”
else

4: i=1

5: print i

6: end

first forward
dominator

Notice that the control dependents,
3 and 4, don’t forward dominate 2

©2000 Judith A. Stafford University of Colorado at Boulder SERL

Forward Dominance Tree

¢ The first forward dominator of X is called the immediate
forward dominator of X, “ifdom(X)”

+ Vertices between X and ifdom(X) are dependent on X
¢ Immediate forward dominators form a tree, “FDT”

Program Simple CFG FDT

1:read i 1 6

2:if(i=1) X > 2 5

3: print “POS:” 3 4 2 » 53 4
else

4: i=1 Y s OO 5 ifdom(2) = 5

5: print i 6

6: end

©2000 Judith A. Stafford University of Colorado at Boulder SERL

A Graph-Based Definition

¢ Y is control dependent on X < there is a path in the CFG
from X to Y that doesn’t contain the immediate forward

dominator of X
1 X 6 E
X > 2 J 5 1 2 5 6
3 4 2 » O3 4 3o *Dy
Y
5 ifdom(2) = 5 4CD2
6
CFG + FDT = CDG

©2000 Judith A. Stafford University of Colorado at Boulder @EFL

How Does This Help?

¢ Now we have half of the answer

cbe entry Program Simple
1:read i
1 29556 2:if (i==1)
3 4 3: print “POS:”
t else
. 4:1 =1
“But. then you notice that statement 5: print i
4 might not even be executed
because it depends on the decision 6: end

made at statement 2”

©2000 Judith A. Stafford University of Colorado at Boulder @FRL

A Graph-Based Model

Program Code

Data Depende
Graph

Program Dependence
Graph

©2000 Judith A. Stafford University of Colorado at Boulder @ERL

Real Programs are More Complex

o CFG-based definitions and algorithms expect a
connected graph

¢ Procedure-level control flow
graphs are not connected
because there is no direct flow
from a call to the next statement

A

RM: Return

©2000 Judith A. Stafford University of Colorado at Boulder @ERL

The Roadmap

v Introduction to Dependence Analysis

= Current State of Affairs and Limitations

+ Judy’s Approach -- A Compositional Model
¢ Related Work

©2000 Judith A. Stafford University of Colorado at Boulder GH!L

Other Models

Uni-Procedure Model Multi-Procedure Approaches

Program

v
CFG — FDT

S—o—

CDG

LIMITED

©2000 Judith A. Stafford University of Colorado at Boulder cm

Other Models

©2000 Judith A. Stafford

Uni-Procedure Model Multi-Procedure Approaches

In-lined Approach

Program Program
v ’//\{
CFG = FDT
\0/_/ Proc A oo Proc Z

A

CFG CFG CFG CFG CFG

N‘/_/

IICFG &> FDT

v

SCDG

LIMITED IMPRACTICAL

University of Colorado at Boulder @ERL

Other Models

Uni-Procedure Model Multi-Procedure Approaches

©2000 Judith A. Stafford

In-lined Approach 1-1 Graph Approach

Program Program Program
M ,//\. »f/\q
CFG - FDT
\0/_/ Proc A o Proc Z Proc A cee Proc Z
cDG ,/% ,/\ i i
CFG CFG CFG CFG CFG CFG CFG
IICFG +» FDT ICFG
SCDG SCDG
LIMITED IMPRACTICAL AD HOC

University of Colorado at Boulder @ERL

The Roadmap

©2000 Judith A. Stafford

v Introduction to Dependence Analysis

v Current State of Affairs and Limitations
= My Approach -- A Compositional Model
+ Related Work

University of Colorado at Boulder @ERL

Guiding Principles

©2000 Judith A. Stafford

¢ Question...

— Can | extend the forward dominator relation to create a practical
and straight-forward model of control dependencies that addresses
the pitfalls?

¢ Approach
— Compositional
» Reason about properties of procedures independently
» Compose procedure-based representations to reflect program-wide
properties
— Language-independent
» Modern programs are composed of parts written in different languages
— Generalizable
» Limitations and power are precisely defined

University of Colorado at Boulder @ERL

A New View - A Compositional Model

Program
/ /\
Proc A Proc B . Proc Z
v v v
PCFG » FDF PCFG » FDF PCFG » FDF Call
\”,/ \0,/ \0// Graph
PCDG PCDG PCDG

Composed System Control
Dependence Graph

©2000 Judith A. Stafford University of Colorado at Boulder SERL

Procedure-level Structures

¢ Keep track of the Procedure
ial indi control flow N
potential indirect flows oraph | interrupted-

and forward dominances flow arc

RM: Return

Forward
Dominance

Forest =
U Procedure Control

Dependence Graph

51

2 3

gci}_ <+
4 RM

University of Colorado at Boulder @ERL

A

— p-fdom arc

Vertices
after a call
depend
upon return

G P ®)

©2000 Judith A. Stafford

A Graph Representation of Structure

o The call graph

Program Multi « Vertices represent procedures in a program
« Arcs represent procedure call
« Arcs are annotated with ID of each call site

1. Proc M

2. callB

3:i=i+1 M

4: return 2)

1: ProcB B

2: return

©2000 Judith A. Stafford University of Colorado at Boulder @EFL

Program-level Structures

¢ Apply program call graph to Program Call Graph |

resolve p-fdom arcs and

identify interprocedural

dependencies call arc labeled <—— 2)
with call site
vertex id roc

Compound Control

@ @ Dependence = EnP o o ExP
D ® < Program ‘
Forw.ard Procedure B
(3) (5) Dominance and forward
D Forest dominators of 2
2 N inherit control
resolve p-fdom arc dependence 5
a into fdom arc from 2 %% ipcd arc
6 RB

©2000 Judith A. Stafford University of Colorado at Boulder @FRL

Example -- Program Sum

4: while i <10 do N
(5:call B

10: call C I

11 :if j >= 0 then

13: read j

RB: Return

16: proc C

17: if sum > 100 then
. 18: print “done”
19 return D

RC: Return

— control flow
» _interrupted-flow

©2000 Judith A. Stafford

University of Colorado at Boulder @ERL

Forward Dominator Forest

v

procedure’s entry vertex

Resolve p-fdom arcs after checking to see if the return
vertex of the called procedure forward dominates the

— ifdom arc
“““ » p-fdom arc

©2000 Judith A. Stafford

University of Colorado at Boulder @ERL

Control Dependencies in Program Sum

+ Call Graph for
Program Sum

Procedure inherits
control dependence of
call

©2000 Judith A. Stafford

¢ Sum’s Compound Control Dependence

Graph

EnSum o>—= ExSum

University of Colorado at Boulder @ERL

Introducing an Embedded Halt

7: print sum

4: while i <10 do I
6:callB I

10: call C I

RB: Return

16: proc C
17: if sum > 100 then

—1 9: return

18: HALT

— control flow
» _interrupted-flow

©2000 Judith A. Stafford

University of Colorado at Boulder @ERL

Forward Dominator Forest -- with EHalt

V/

Resolve p-fdom arcs after checking to see if the return
vertex of the called procedure forward dominates the
procedure’s entry vertex.

— ifdom arc
“““ » p-fdom arc

©2000 Judith A. Stafford

University of Colorado at Boulder @ERL

Effect of Halt on Control Dependence

¢ Call Graph for
Program Sum

Procedure inherits

¢ Sum’s Compound Control Dependence

Graph

control dependence of

call/return sites

©2000 Judith A. Stafford

EnSum o—= ExSum

M
B 9
10 11
12 13 14 &> 15 ©RB

University of Colorado at Boulder @ERL

Related Work

¢ Researchers have extended the CFG and generate the
CDG in ad hoc ways to apply to complex programs

CFG + FDT = CDG

xFG

xFG
xFG
xFG

xFG

©2000 Judith A. Stafford

~~\\WN\» xCDG

M\ xCDG
M\ xCDG
M\ xCDG

W\ xCDG

Uni-procedure
Multi-procedure

Object-oriented
Concurrent

Concurrent-O0O

Reactive

Podgurski+'90
Ferrante+'87

Horwitz+'90, Loyall+'93
Harrold+98,99,Liao+'99

Larsen+'96
Zhao+'96

Zhao+'96

Hatcliff+'99,
Zhao+'99

Clarke+'99,
Stafford+'98

University of Colorado at Boulder @ERL

